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Abstract— Global localization in 3D point clouds is a chal-
lenging problem of estimating the pose of vehicles without any
prior knowledge. In this paper, a solution to this problem
is presented by achieving place recognition and metric pose
estimation in the global prior map. Specifically, we present a
semi-handcrafted representation learning method for LiDAR
point clouds using siamese LocNets, which states the place
recognition problem to a similarity modeling problem. With
the final learned representations by LocNet, a global localiza-
tion framework with range-only observations is proposed. To
demonstrate the performance and effectiveness of our global
localization system, KITTI dataset is employed for comparison
with other algorithms, and also on our long-time multi-session
datasets for evaluation. The result shows that our system can
achieve high accuracy.

I. INTRODUCTION

Localization aims at estimating the pose of mobile ve-
hicles, thus it is a primary requirement for autonomous
navigation. When a global map is given and the prior pose is
centering on the correct position, pose tracking is enough to
handle the localization of the robot or vehicle [1]. In case the
vehicle misses its pose in GPS-denied urban environments,
re-localization module tries to re-localize the vehicle. While
for mapping, loop closing is a crucial component for global
consistent map building, as it can localize the vehicle in
the previously mapped area. Note that for both loop closing
and re-localization, their underlying problems are the same,
which requires the vehicle to localize itself in a given map
without any prior knowledge as soon as possible. To unify the
naming, we call this common problem as global localization
in the remainder of this paper.

Global localization is relatively mature when the robot
is equipped with a 2D laser range finder [2]. For vision
sensors, the topological loop closure is investigated in recent
years [3], and the pose is mainly derived by classical feature
keypoints matching. The success of deep learning raised
the learning based methods as new potential techniques for
solving visual localization problems [4]. However, for 3D
point cloud sensor, e.g. 3D LiDAR, which is popular in the
area of autonomous driving, there are less works focusing on
the global localization problem [5], which mainly focused on
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designing representations for matching between sensor read-
ings and the map. Learning the representation of 3D point
cloud is explored in objects detection [6], but inapplicable in
localization problem. In summary, the crucial challenge we
consider is the lack of compact and efficient representation
for global localization.

In this paper, we propose a semi-handcrafted deep neural
network, LocNet, to learn the representation of 3D LiDAR
sensor readings, upon which, a Monte-Carlo localization
framework is designed for global metric localization. The
frame of our localization system is illustrated in Fig. 1.
The sensor readings is first transformed as a handcrafted
rotational invariant representation, which is then passed
through a network to generate a low-dimensional fingerprint.
Importantly, when the representations of two readings are
close, the two readings are collected in the same place with
high probability. With this property, the sensor readings are
organized as a global prior map, on which a particle based
localizer is presented with range-only observations to achieve
the fast convergence to correct the location and orientation.

The contributions of this paper are presented as follows:
• A handcrafted representation for structured point cloud

is proposed, which achieves rotational invariance, guar-
anteeing this property in the learned representation.

• Siamese architecture is introduced in LocNet to model
the similarity between two LiDAR readings. As the
learning metric is built in the Euclidean space, the
learned representation can be measured in the Euclidean
space by simple computation.

• A global localization framework with range-only obser-
vations is proposed, which is built upon the prior map
made up of poses and learned representations.

The rest of this paper is organized as follows: Section
II describes related work of global localization. In Section
III, we introduce the details of our system. We evaluate our
system on KITTI odometry benchmark and our own dataset
in Section IV. Section V concludes with a brief discussion
on our methods.

II. RELATED WORK

In general, the global localization consists of two stages,
place recognition, which finds the frame in the map that
is topologically close to the current frame, and metric pose
estimation, which yields the relative pose from the map frame
to the current frame, thus localizing the vehicle finally. We
review the related works in two steps, place recognition and
metric pose estimation.

As images provide rich information of the surrounding
environments, the place recognition phase in the global
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Fig. 1: The framework of our global localization system.

localization is quite mature in vision community. Most image
based localization methods employed bag of words for
description of a frame [3]. Based on this scheme, sequences
of images were considered for matching instead of single
frame to improve the precision [7]. To enhance the place
recognition across illumination variance, illumination invari-
ant description was studied for better matching performance
[8]. However, given the matched frame in the map to the
current frame, the pose estimation is still challenging, since
the feature points change a lot across illumination, and the
image level descriptor cannot reflect the information of the
metric pose.

Compared with vision based methods, the place recogni-
tion in point clouds does not suffer from various illumination.
A direct method of matching current LiDAR with the given
map is registration. Go-ICP, a global registration method
without initialization was proposed in [9]. But it is relatively
computational complex. Thus we still refer to the two-
step method, place recognition then metric pose estimation.
Some works achieved place recognition in the semantic level.
SegMatch, presented by Dube et al. [5], tried to match to
the map using features like buildings, trees or vehicles. With
these matched semantic features, a metric pose estimation
was then possible. As semantic level feature is usually
environment dependent, point features in point cloud are
also investigated. Spin image [10] was a keypoint based
method to represent surface of 3D scene. ESF [11] used
distance and angle properties to generate keypoints without
computing normal vectors. Bosse and Zlot [12] proposed 3D
Gestalt descriptors in 3D point clouds for matching. These
works mainly focused on the local features in the frames for
matching.

For frame level descriptors, there were some works uti-
lizing the handcrafted representation. Magnusson et al. [13]
proposed an appearance based loop detection method using

NDT surface representation. Röhling et al. [14] proposed
a 1-D histogram to describe the range distribution of the
entire point cloud. For learning based method, Granström and
Schön [15] used features that capture important geometric
and statistical properties of 2D point clouds. The features are
used as input to the machine learning algorithm - Adaboosts
to build a classifier for matching. Based on the deep learning,
our method set to develop the learning based representations
for 3D point clouds.

III. METHODS

The proposed global localization system includes two
components as shown in Fig. 1, map building and local-
ization. In the map building component, frames collected
in the mapping session are transformed through LocNet to
generate the corresponding fingerprints, forming a kd-tree
based vocabulary for online matching as a global prior map.
The localization component is utilized in the online session,
which transforms the current frame to the fingerprint using
LocNet for searching similar frames in the global prior map.
One can see that the crucial module in both components
is the LocNet which is shown in Fig. 2. The LocNet is
duplicated to form the siamese network for training. When
being deployed in the localization system, LocNet, i.e. one
branch of the siamese network, is extracted for representation
generation. In this section, the LocNet is first introduced,
followed by the global localization system design.

A. Rotational Invariant Representation

Each point in a frame P of LiDAR data is described using
(x, y, z) in Cartesian coordinates, which can be transformed
to (r, θ, φ) in spherical coordinates. Considering the general
3D LiDAR sensor, the elevation angle θ is actually discrete,
thus the frame P can be divided into multiple rings of
measurements, which is denoted as SiN ∈ P , where i is
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Fig. 2: The framework of our siamese network for training, including the generation process of handcrafted representations.

the index of rings from 1 to N . In each ring, the points are
sorted by azimuth angle φ, of which each point is denoted
by pk, where k is the index determined by φ. As a result, in
each LiDAR frame, each point is indexed by ring index SiN
and φ index k.

Given a ring SiN , the 2D distance between two consecu-
tive points pk and pk−1 is calculated as

d(pk, pk−1) =
√

(xk − xk−1)2 + (yk − yk−1)2 (1)

which lies in a pre-specified range interval d ∈ [dmin, dmax].
For a whole ring, we calculate all the distances between

each pair of consecutive points. Then, we set a constant
bucket count b and a range value I = [dmin, dmax], and
divide I into subintervals of size:

∆Ib =
1

b
(dmax − dmin) (2)

and each bucket corresponds to one of the disjunct intervals,
show as follows:

Imb = [dmin + n ·∆Ib, dmin + (n+ 1) ·∆Ib] (3)

where n is the bucket index and all d in the ring SiN can
find which bucket it belongs to. So the histogram for a ring
SiN can be written as

Hi
b =

(
h0b , · · · , hb−1

b

)
(4)

with

hmb =
1∣∣SiN ∣∣
∣∣{pk ∈ SiN : d (pk, pk−1) ∈ Imb

}∣∣ (5)

Finally, we stack N histograms Hi
b together in the order of

rings from top to bottom. Then a N × b one-channel image-
like representation R = (H0

b , · · · , H
N−1
b )T is produced

from the point cloud P . Using this representation, if the
vehicle rotates at the same place, the representation keeps
constant, thus rotational invariant.

One disturbance in global localization is the moving ob-
jects, as they may cause unpredictable changes of range dis-
tributions. By utilizing the ring information, this disturbance
can be tolerated to some extent, since the moving objects
usually occur near the ground, the rings corresponding to
higher elevation angles are decoupled from these dynamics.

B. Learned Representation

With the handcrafted representation R, we transform the
global localization problem to an identity verification prob-
lem. Siamese network is able to solve this problem and
reduce the dimension of representations, as shown in Fig. 2.

Assume that the final output of any side (Side 1 or Side 2
in Fig. 2) of the siamese neural network is a d dimensional
feature vector GW (R) = {g1, · · · , gd}. The parameterized
distance function to be learned from the neural network be-
tween image-like representations R1 and R2 is DW (R1, R2),
which represents the Euclidean distance between the outputs
of GW , show as follows:

DW (R1, R2) = ‖GW (R1)−GW (R2)‖2 (6)

In the siamese convolution neural network, the most
critical part is the contrastive loss function, proposed by
Lecun et al. [16], show as follows:

L(Y,R1, R2)=Y
1

2
(DW )2+(1−Y )

1

2
max(0,m−DW )

2 (7)

As one can see, the loss function needs a pair of samples
to compute the final loss. Let label Y be assigned to a pair
of representations R1 and R2: Y = 1 if R1 and R2 are
similar, representing the two places are close, so the two
frames are matched; and Y = 0 if R1 and R2 are dissimilar,
representing the two places are not the same which is the
most common situation in localization and mapping system.
Actually, the purpose of contrastive loss is try to decrease the
value of DW for similar pairs and increase it for dissimilar
pairs in the training step.

After the network is trained, in the testing step, we assume
all places are the same to the query frame. So in order to
achieve the similarity between a pair of input representations
R1 and R2, we manually set the label Y = 1, then the
contrastive loss is as following:

L(R1, R2) =
1

2
(DW )2 (8)

As one can see, if the matching of two places is real, the
calculated contrastive loss should be a very low value. If
not real, the loss should be a higher value, and the second
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part of original contrastive loss should be low to minimize
L(Y,R1, R2). And it is easy to judge the place recognition
using a binary classifier Cτ with threshold τ :

Cτ (R1, R2) =

{
true , DW ≤ τ
false , DW > τ

(9)

where parameter τ decides the place recognition result.
In summary, the advantage of using neural network is

obvious. The low-dimensional representation, the fingerprint
GW (R), is learned in the Euclidean space, so it is convenient
to build the prior map for global localization.

C. Global Localization Implementation
As previously described, global localization of mobile

vehicles is based on prior maps and pose estimation. Ac-
cordingly, it is necessary to build a reliable prior global map
first, especially for long-time running vehicles.

In this paper, we utilize 3D LiDAR based SLAM tech-
nology to produce the map, which provides a metric pose
graph {X} with each node indicating a LiDAR frame, whose
corresponding representations {GW (R)} is also included by
passing the frame through LocNet, as well as the entire
corrected global point cloud P . So, our prior global map
M is made up as follows:

M = {P, {GW (R)} , {X}} (10)

In order to improve the searching efficiency for real-time
localization, a kd-tree K is built based on set {GW (R)} in
Euclidean space. Thus the prior global map is as follows:

M = {P,K, {X}} (11)

After the map is built, when a new point cloud Pt comes at
time t, it is firstly transformed to handcrafted representation
Rt and then to the dimension reduced feature GW (Rt) by
LocNet. Assuming the closest matching result of it in K is
Rk, and the pose in memory that Rk attached with is Xk.
Thus, the observation Z of the matching can be regarded as
a range only observation:

Z = Xk (12)

We utilize Monte-Carlo Localization to estimate the 2D
pose Xt with the continuous observations. And the weight
is computed based on the the distance between the particles
and the observed pose according to Gaussian distribution.
Particles with less weights are filtered in the re-sampling
step, and those with high probability are kept. After some
steps, MCL is converged to a correct orientation with range-
only observations and continuous odometry.

Based on the produced Xt, we set it as the initial value of
ICP algorithm [17], which help the vehicle achieve a more
precise 6D pose by registering current point cloud Pt with
the entire point cloud P . In overall, the whole localization
process is from coarse to fine.

IV. EXPERIMENTS

The proposed global localization system is evaluated in
two aspects: the performance of place recognition, the fea-
sibility and convergence of localization.

(a) running routes (b) global point cloud P

Fig. 3: (a) 6 same route lines over 3 days at the south of
Yuquan campus in Zhejiang University (b) produced global
point cloud P after the first running in Day 1.

A. Datasets and Training

In the experiments, two datasets are employed. First,
KITTI dataset [18], has the odometry datasets with both
Velodyne HDL-64 LiDAR sensor readings and the ground
truth for evaluation. We pick the odometry benchmark 00, 02,
05, 06 and 08 with loop closures for test. Second, we collect
our own 21-session dataset with a length of 1.1km in each
session across 3 days [19], called YQ21, from the university
campus using our mobile robot. The ground truth of our
datasets is built using DGPS aided SLAM and localization
with handcrafted initial pose. Our vehicle equips a Velodyne
VLP-16 LiDAR sensor, which also tests the feasibility to
different 3D LiDAR sensors. We select 6 sessions over 3
days for evaluation, as shown in Fig. 3.

On different datasets, different strategies are applied to
train LocNet. In KITTI dataset, we generate 11000 positive
samples and 28220 negative samples from other sequences
using dense poses, and set margin value m = 12 in the
contrastive loss. While in YQ21 dataset, the first session
in Day 1 is used to build the target global map M . The
3 sessions in Day 2 are used to train LocNet and the last
two sessions in Day 3: Day 3-1 and Day 3-2 are used to
test the LocNet. The former is collected in the morning and
the latter is in the afternoon, verifying that no illumination
variance can affect the localization performance when using
point clouds. And we finally generate 21300 positive samples
and 40700 negative ones for training and set m = 8. We
implement our siamese network using caffe1.

B. Place Recognition Performance

We compare LocNet with other three algorithms, mainly
the 3D point cloud keypoints based method, and the frame
descriptor based method: Spin Image [10], ESF [11] and Fast
Histogram [14]. Spin Image and ESF are based on local
descriptors, and we transform the entire point cloud as a
global descriptor, and the LiDAR sensor is the center of the
descriptor. We use the C++ implementation of them in the
PCL2. As for Fast Histogram and LocNet, the buckets of
histograms are set with the same value b = 80.

1http://caffe.berkeleyvision.org/
2http://pointclouds.org/
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TABLE I: F1max score on sequence 00 with different p

Methods p = 2m p = 3m p = 5m p = 10m
Spin Image 0.600 0.506 0.388 0.271

ESF 0.432 0.361 0.285 0.216
Fast Histogram 0.612 0.503 0.384 0.273

LocNet 0.717 0.642 0.522 0.385

TABLE II: F1max score on other sequences with p = 3m

Methods Seq 02 Seq 05 Seq 06 Seq 08 Day 3-1
Spin Image 0.547 0.550 0.650 0.566 0.614

ESF 0.461 0.371 0.439 0.423 0.373
Fast Histogram 0.513 0.569 0.597 0.521 0.531

LocNet 0.702 0.689 0.714 0.664 0.607

In some papers, the test set is manually selected [13] [15],
while we select to compute the performance by exhaustively
matching any pairs of frame in the dataset. Based on the vec-
torized outputs of algorithms, we generate similarity matrix
using kd-tree, then evaluate performance by comparing to the
ground truth based similarity matrix. It’s a huge calculation,
almost half of the 4541×4541 comparison times of sequence
00 for instance.

The results of a place recognition algorithm are described
using precision and recall metrics [20]. We use the maxi-
mum value of F1 score to evaluate different precision-recall
relationships. With the ground truth provided by datasets,
we consider that two places are the same if their Euclidean
distance is below p. So different values of threshold p
determines the final performances. We test different p values
on sequence 00 and the results are shown in TABLE I.

Besides, we set p = 3m and test the four methods on other
sequences and F1 scores are shown in TABLE II. Obviously,
the proposed LocNet achieves the best performance in most
tests compared to other methods.

C. Localization Probability

In order to evaluate the performance of localizing, [5]
shows the probability of traveling a given distance with-
out successful localization in the target map. Thanks to
the open source code of SegMatch3, we run 10 times in
sequence 00 on the entire provided target map and present
the average result. We record all the segmentation points as
the successful localizations from the beginning to the end.
As for the other four methods, we build the kd-tree based
on the vectorized representations and look for the nearest
pose when the current frame comes. If it is a true positive
matching, we record it as a successful localization. There
are no random factors in these four methods, so we run them
only once. It is worth mentioning that SegMatch can return a
full localization transformation using geometric verification,
which is different from other place recognition algorithms.

As shown in Fig. 4, the vehicle can localize itself within
20 meters 100% of the time using LocNet. It is nearly 98%
for SegMatch and Spin Image, and 95% for the other two.
The geometric methods and LocNets are based on one frame

3https://github.com/ethz-asl/segmatch

Fig. 4: Localization probability of traveling a given distance
before localizing on the target global map of sequence 00.

(a) Sequence 00 (bird view) (b) Loop closure detection

Fig. 5: Place recognition detections on loop sections in
sequence 00. In (b), red line stands for false positive match,
green line for false negative and blue line for true positive.
We add a growing height to each pose with respect to the
time, so that the match can be visualized clearly.

of LiDAR data, so they can achieve a higher percentage of
the timing within 10 meters. While SegMatch relies on the
semantic segmentation of the environments, so it needs an
accumulation of 3D point clouds, thus resulting in a poorer
performance in short traveling distance. Additionally, the
loop closing results using LocNet on sequence 00 is shown
as Fig. 5. These experiments all support that our system is
effective to yield the correct topologically matching frame
in the map.

D. Global Localization Performance

We demonstrate the performance of our global localization
system in two ways: re-localization and position tracking. If
a vehicle loses its location, re-localization ability is the the
key to help it localize itself; and the coming position tracking
achieve the localization continually.

1) Re-localization: The convergence rate of re-
localization actually depends on the number of particles and
the first observation they get in Monte-Carlo Localization.
So it is hard to evaluate the convergence rate. We give a case
study of re-localization using our vehicle in YQ21 dataset
(see Fig. 6). The error of yaw angle and the positional
angle are presented, together with the root mean square
(rmse) error of registration, which is the Euclidean distance
between the aligned point clouds P and Pt.

Obviously the re-localization process can converges to a
stable pose within 5m operation of the vehicle. And a change
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(a) (b)

Fig. 6: (a) the convergence of yaw degree of re-localization
(b) the decrease of location error and registration error.

(a) Day3-1 location error (b) Day3-2 location error

(c) Day3-1 heading error (d) Day3-2 heading error

Fig. 7: Localization results of Day 3-1 and Day 3-2 on the
global map of Day 1. (a) and (b): the distributions of location
errors. (c) and (d): the distributions of heading errors (yaw
angle errors).

in location makes a change in the registration error. In multi-
session datasets, the point clouds for localization are different
from those frames forming the map, so the registration error
can not be decreased to zero using ICP.

2) Position Tracking: Once the vehicle is re-localized, the
global localization system can achieve the position tracking
of the vehicle. The range-only observations provide reliable
information of vehicle global pose, and ICP algorithm can
help the vehicle localize more accurately. We test both Day
3-1 and Day 3-2 and the results are presented in Fig. 7.

Based on the statistics analysis, our global localization
system can achieve high accuracy of position tracking. 93.0%
of location errors are below 0.1m in Day 3-1, and 88.9% in
Day 3-2; for rotational errors, 93.1% of heading errors are
below 0.2◦ in Day 3-1, and 90.7% in the afternoon of Day
3-2. The negligible errors cause no effect for autonomous
navigation actions of the vehicle.

V. CONCLUSION

This paper presents a global localization system in 3D
point clouds for mobile robots or vehicles, evaluated on

different datasets. The global localization method is based
on the learned representations by LocNet in Euclidean space,
which are used to build the necessary global prior map. In
the future, we would like to achieve the global localization
in the dynamic environments for mobile vehicles.
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