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Abstract—Loop closure detection in 3D LIDAR data is an es-
sential but challenging problem in SLAM system. It is important
to reduce global inconsistency or re-localize the robot that loses
the localization, while is difficult for the lack of prior information.
We present a semi-handcrafted representation learning method
for LIDAR point cloud using siamese convolution neural network,
which states the loop closure detection to a similarity modeling
problem. With the learned representation, the similarity between
two LIDAR scans is transformed as the Euclidean distance
between the representations respectively. Based on it, we fur-
thermore establish kd-tree to accelerate the searching of similar
scans. To demonstrate the performance and effectiveness of the
proposed method, the KITTI dataset is employed for comparison
with other LIDAR loop closure detection methods. The result
shows that our method can achieve both higher accuracy and
efficiency.

I. INTRODUCTION

Loop closure detection, or place recognition, is a key part
in the area of SLAM (simultaneous localization and mapping)
for mobile robotics. The drift is unavoidable for mobile robots
without loop closure detection or global localization. In order
to reduce the accumulated error taken by the odometry, loop
closure detection is quite necessary, especially for long-term
running robots. By finding loop closures, the robot understands
the real topology of the environment [1].

Actually, loop closure is the problem of recognizing a
previously-visited place with low or no prior information.
Most existing loop closure detection algorithms measure the
similarity of the sensor data between places essentially. For
vision-based SLAM, sequence of images provide a rich data
source, from which it is relatively easier for robots to identify
the re-observed places by using developed image processing
technologies. Generally, the most popular loop closure algo-
rithm for visual SLAM is based on point features or global
descriptors [2]; besides, deep neural network (DNN) has been
applied in image recognition, which is recently employed to
place recognition [3].

As for laser-based SLAM, numerous laser sensors provide
accurate range and intensity information of discrete laser
points. Some works achieve the place recognition in 3D
LIDAR data based on the segmentation of point clouds and
handcrafted descriptors [4] [5]. However, the research on
features in point clouds is not as mature as that in vision
community. The popularity of neural network in images is
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Fig. 1: A brief illustration of our detection process. The
3D point cloud (left) is first transformed to an image-like
2D representation (left two) with rotation invariance. The
representation is colored for showing. A pair of such images
are put into a symmetric DNN (right two), where each side of
it is the same. The network is trained by using the ground truth
and 3D LIDAR data. The final representation of point cloud
is a feature vector (right) and the similarity is easily achieved
in Euclidean space for further loop closure detection.

extended to laser these days, but representation of LIDAR
data is task oriented. For example, Li et al. [6] utilize a
fully convolution network techniques in 3D LIDAR data based
detection tasks by projecting range scans to 2D images. But
the projected 2D images could not be used for loop closure
detection directly.

As one can see, the main obstacle preventing the DNN being
employed in loop closure detection is the lack of representation
of 3D LIDAR data. In this paper, we use siamese convolution
neural network, a popular metric learning tool, to learn a
representation which is suitable for loop closure detection.

In summary, we propose a method to transform the LIDAR
data to a DNN accessible representation with rotation invari-
ance. This handcrafted representation is further learned by a
DNN to identify loop closures. As a result, the output of the
network becomes low-dimensional representaion, which also
makes the Euclidean metric meaningful. It finally provides an
efficient way to detect loop closures in 3D LIDAR data. This
paper presents following contributions:
• A statistics on the range information converts a 3D point

cloud to one-channel image. The representation is suitable
for neural network and is in prior rotation invariance.

• The loop closure detection problem is turned into an iden-
tity verification problem. A siamese convolution neural
network is introduced to model the similarity between
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LIDAR scans which can be trained using small amount
of samples.

• The Euclidean metric in the final representation is mean-
ingful on which a kd-tree is established to improve the
search efficiency in huge data significantly, compared to
other distance metrics.

The reminder of this paper is organized as follows: Section
II describes the related work of loop closure detection in 3D
point clouds and the methods of visual loop closure detection.
In Section III, we introduce the details of our methods and
distance metrics. We make comparison on KITTI odometry
benchmark in Section IV. In Section V, we conclude with a
brief discussion on our work.

II. RELATED WORKS

A. Visual Place Recognition

A widely-used visual loop closure algorithm is Bag-of-
Words (BoW) [7]. The BoW model clusters the visual features
descriptors in images [2], and builds the dictionary to achieve
place recognition. The SLAM system in [8] builds a database
incrementally with index for keyframes, so that querying the
database can be done very efficiently. Cummins et al. [9]
proposed a method that takes into account of the probabilities
of features and is able to work out the probability that two
images show the same region of the world.

In recent years, convolution neural networks are used as
robust feature extractors for visual place recognition [10].
Chen et al. [11] proposed a system combining the powerful
features learned by networks with a spatial and sequential
filter. In [12], real world datasets are presented to evaluate
the specific challenges in place recognition by using different
kinds of networks.

While these techniques above cannot be applied to loop clo-
sure detection of 3D LIDAR data directly. Extracting features
in 3D point clouds is hard because of the point structure. Point
cloud is not suitable to be the input of DNN for the lack of
representation.

B. Loop Closing in 3D point clouds

Loop closure detection in 3D LIDAR data remains an open
problem in the field of mobile robotics, which needs to be
solved with poor or no prior information. A number of papers
propose different solutions on loop closure detection from
different views in the recent years.

Previous works extract local features from keypoints and
perform matches on the basis of these features. Nieto and
Ramos [13] used features that capture important geometric and
statistical properties of point clouds. The features are used as
input to the machine learning algorithm AdaBoosts to build
a non-linear classifier capable of detecting loop closure from
pairs of point clouds. While Bosse and Zlot [5] used a 3D
Gestalt descriptor to describe the keypoints extracted from
point clouds. The vote scores with keypoints and thresholds
are critical for this kind of place recognition.

Some works achieve loop closure detection at the semantic
level. SegMatch, presented by Dube et al. [4], is a segment
based algorithm to perform place recognition with 3D point

clouds. Algorithms like this rely on mature point cloud seg-
mentation technologies [14]. Fernandez et al. [15] detected
planes in 3D environments to perform place recognition.

Considering laser sensor provides sufficient range informa-
tion, global feature is useful for detecting loop closures in 3D
LIDAR data. Magnusson et al. [16] proposed an appearance
based loop detection method using NDT surface representa-
tion. Röhling et al. [17] proposed a 1-D histogram to describe
the range distribution of a point cloud. A large number of
histograms are compared each other using Wasserstein metric
to measure the similarity between point clouds. In this paper,
we compare our method with this metric distance, but the
1D histogram turns to be the 2D handcrafted representation
instead.

III. METHOD

The whole detection framework is shown in Fig. 1. First,
by using the ring structure and range distribution information
of LIDAR data, we transform the point cloud to a handcrafted
representation with rotation invariance. Secondly, we utilize
the pre-trained convolution neural network to achieve a learned
low-dimensional representation. The Euclidean distance be-
tween the final representations is the similarity for loop closure
detection. Based on the low-dimensional final representations,
a kd-tree is established to increase the searching efficiency.

A. Rotational Invariant Representation
For a point cloud P obtained by LIDAR sensor, according

to the discrete elevation angle in spherical coordinates, it could
be divided into N rings SiN , where i is the index of rings from
1 to N .

In order to transform the entire 3D point cloud to a 2D
representation, we first transform each SiN to a 1D histogram
Hi. We set a constant bucket count b and a distance range
I = [vmin, vmax], then divide I into subintervals of size:

∆Ib =
1

b
(vmax − vmin)

Each bucket corresponds with one of the disjunct intervals,
show as follows:

Ikb = [vmin + k ·∆Ib, vmin + (k + 1) ·∆Ib]

So all the range values v(p) of points in the ring can find
which bucket it belongs to. And the histogram for a ring SiN
of point cloud P can be written as

Hi
b =

(
h0b , · · · , h

b−1
b

)
with

hkb =
1∣∣SiN ∣∣
∣∣{p ∈ SiN : v (p) ∈ Ikb

}∣∣
Theoretically, the number of LIDAR measurements per

frame is a constant value. While in practise, some surface types
(e.g. glass) may not return any meaningful measurements at all
for some reason. The normalization ensures that the histograms
remain comparable under these unexpected conditions.

Finally, we stack N histograms Hi
b together in the order of

the rings from top to bottom. Then a N×b one-channel image-
like representation X = (H0

b , · · · , H
N−1
b ) is produced with a

Authorized licensed use limited to: Zhejiang University. Downloaded on May 14,2020 at 07:14:24 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: The framework of our siamese DNN. The two sides of
the network are same and share the same parameters. In the
frame, conv stands for a convolution layer, pool stands for
a MAX pooling layer and FC stands for a fully convolution
layer. For training this network, a pair of images X1, X2 and
the label Y are needed.

point cloud P by our method. Using the 2D representation, if
the robot rotates at the same place, the representation always
keeps constant, thus rotational invariant.

One disturbance in place recognition is the moving objects,
as it may cause unpredictable changes of range distributions.
By utilizing the ring information, the disturbance can be
tolerated to some extent, since the moving objects usually
occur near the ground, the rings corresponding to higher
elevation angles are decoupled form these dynamics. Besides,
the range values are reliable in LIDAR data. In a word, that’s
why we transform the point cloud in this way.

B. Learned Representation

With the handcrafted representation X , we transform the
loop closure detection to an identity verification problem,
which can be solved with a siamese neural network. We
propose a DNN with contrastive loss to learn the final rep-
resentation and implement it with caffe1. The structure of the
neural network is shown in Fig. 2.

For a siamese convolution neural network, the most critical
and interesting part is the contrastive loss function, proposed
by Lecun et al. [18], shows as follows:

L(Y,X1, X2) = Y
1

2
(DW )2 + (1− Y )

1

2
max(0,m−DW )

2

In the training step, the loss function needs a pair of samples
to calculate the final loss. Let label Y be assigned to a pair
X1 and X2 : Y = 1 if X1 and X2 are similar, representing
the two places are loop closed in this paper; and Y = 0 if
X1 and X2 are dissimilar, representing the two places are not
loop closed, which is the common situation in SLAM system
for mobile robotics.

In the contrastive loss function, m > 0 is a margin value,
which has an influence on the role that dissimilar pairs play
in the training step. Actually, the greater the margin value is,
the harder the neural network is trained. In this paper, most
dissimilar pairs of images cannot be differentiated from similar
pairs easily, so we set m = 8, a relative high value.

Assume the output of one side of siamese convolution neural
network is a d dimensional vector GW (X) = {x1, · · · , xd}.
Define the parameterized distance function to be learned from

1http://caffe.berkeleyvision.org/

the neural network between X1 and X2 is DW (X1, X2),
which represents the euclidean distance between the outputs
of GW . Show as follows:

DW (X1, X2) = ‖GW (X1)−GW (X2)‖2
The purpose of contrastive loss is to decrease the value of

DW for similar pairs and increase that value for dissimilar
pairs. In a word, the final representation GW (X) is actually
a low-dimensional vector, which represents the point cloud P
and the pose it assigned to.

C. Distance Metrics

Actually, for a pair of input images X1 and X2, to achieve
the similarity in the test step, we assume all places are loop
closed and set the label Y = 1, then the contrastive loss is as
follows

L(X1, X2) =
1

2
(DW )2

As one can see, if the two places are real loop closed or
the final representations are similar, the calculated contrastive
loss should be a low value. If not loop closed, it should be a
higher value, while the second part of contrastive loss should
be lower. So the final representation GW (X) of point cloud P
is meaningful in Euclidean space and we propose the metric
Ws as follows:

W(X1, X2)S = DW (X1, X2)

We also employ another two classical distance metrics to
measure the similarity between X1 and X2.

The first one is discrete Wasserstein metric between two his-
tograms, which is also known as Earth Mover′s Distance
(EMD). For multi-dimensional histograms, this computation
involves the solution of a transportation problem, typically
solved with the Hungarian Algorithm, which is quite complex.
As our image is made up by 1-D histograms, we define the
final metric is the mean value of the Wasserstein metric of N
histograms, so the formula of EMD metric is as follows:

W(X1, X2)E =
1

N

N∑
n=1

1

b

b∑
i=1

∣∣∣∣∣∣
i∑

j=1

x1n,j
− x2i,j

∣∣∣∣∣∣
Another distance metric is Cosine Distance (Cos). Cosine

distance is a simple and common measurement of similarity
between two non-zero vectors. It measures the cosine of the
angle between them, which could also be used to measure the
similarity between images. The definition of the similarity in
this case is as follows:

W(X1, X2)C = 1− 1

N

N∑
n=1

X1n ·X2n

|X1n | |X2n |

Essentially, the three different methods mentioned in this
section measure the distance between a pair of images X1

and X2. Both WC and WE are at the range [0, 1], while WS

is not because of the definition of the final representation GW .
However, for all metrics mentioned in this paper, something

is common: the higher the metric is, the dissimilar the two
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(a) p = 1m (b) p = 2m (c) p = 3m

Fig. 3: Experiment 1. ROC curves of sequence 08 in KITTI odometry benchmark with different thresholds p and different
metrics mentioned in this paper.

images are and vice versa. If the metric is under a certain
threshold τ or close to zero, we could conclude that two
images or features are similar, and the two poses that the point
cloud assigned are loop closed.

D. KD-Tree Search Implementation

If the network is pre-trained, we are able to transform a
3D point cloud P to a d dimensional feature vector GW (X).
The final representation is semi-handcrafted because of the
artificial statistics and DNN. We could build a kd-tree T based
on the large number of final low-dimensional vectors.

If a new point cloud comes and is transformed to a certain
vector through the pre-trained DNN, the feature vector is
able to find m closest vectors in the established tree under
the threshold τ . Essentially, each vector is associated with a
certain and exact pose in the SLAM system, but not all the
closest vectors are the loop closed poses. Some closest poses
and the newcome pose are continuous on the time axis. After
filtering these poses, the remains of closest poses are the real
loop closures we want.

The use of kd-tree on the outputs of network takes advantage
of our final representation GW (X). More crucially, kd-tree
based search significantly increases the searching efficiency
when we look for loop closures in huge data, for most of
calculation is unneeded and ignored under the constraint of
threshold τ .

IV. EVALUATION

KITTI dataset [19] is a public and popular benchmarking
dataset, and has the odometry datasets with Velodyne 64
rings LIDAR sensor and the ground truth. In fact, 5 of these
sequences (00, 02, 05, 06 and 08) contain the loop closures
to evaluate our methods. Among them, sequence 08 is the
only one that can test the rotation invariance of loop closure
algorithms.

We evaluate the accuracy of our methods in Experiment
1 and Experiment 2 and test the efficiency in Experiment
3. In Experiment 1, we test the loop closure detection with
different distance thresholds. In Experiment 2, we set the
distance threshold as a constant value, and test the method
on different sequences. In Experiment 3, we record the time
costs with different distance metrics. In Experiment 4, case
study is shown for further analysis.

A. Experiment 1: Different Distance Threshold

As for ground truth provided by KITTI, we consider that
two places are the same if their Euclidean distance is below p.
So different threshold p determines the requirement for loop
closure and the samples we prepared for network training. The
higher threshold p is, the more training and testing sample we
will have. Some samples are repeated so the down-sampling
is realized. The details of sample size is in TABLE I (Size:
positive sample size / negative sample size).

In Experiment 1, we test different values of p on sequence
08 and other sequences provide the training samples. To
evaluate the result of training, we select the Receiver Operat-
ing Characteristic (ROC) curves [17], which plots the False
Positive Rate against the True Positive Rate, and calculate
the Area Under Curve (AUC) for the correlative curve. We
compare the training result of neural network with other two
metrics: EMD metric and Cos metric. (see Fig. 3)

As the results show, obviously, our method presents a better
result than the other metrics under different distance threshold
p. For loop closure detection, the larger p is, the greater the
difficulties, and AUC value of each metric becomes lower.
Besides, sequence 08 is the only one that the robot turns
180◦ when the loop closure appears, which proves that our
representation is also rotational invariant for loop closure
detection in 3D LIDAR data.

TABLE I: Sample Size and AUC of sequence 08

Sequence p Size DNN EMD Cos
08 1 m 284 / 552 0.987 0.941 0.944
08 2 m 1114 / 1959 0.939 0.887 0.880
08 3 m 1994 / 4141 0.911 0.870 0.867

B. Experiment 2: Leave One Out

In Experiment 2, we set threshold p = 3m as a constant
value for different sequences in KITTI odometry benchmark.
Each time, we test on one sequence and use training samples of
the others. We compute and plot similarity matrices to evaluate
our results for loop closure detection. A similarity matrix is
able to reflect the detection results directly.

In order to compute a similarity matrix, we need to deter-
mine threshold τ to decide whether two places are the same.
We select the widely-used Fβ score to achieve threshold τ .
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(a) ROC curve of sequence 00 (b) ROC curve of sequence 02

(c) ROC curve of sequence 05 (d) ROC curve of sequence 06

Fig. 4: Experiment 2. ROC curves of sequences in KITTI
odometry benchmark with a certain threshold p = 3m and
different metrics mentioned in this paper.

Using the ground poses provided by KITTI, we are able to
determine True Positive (TP), False Positive (FP), True Neg-
ative (TN) and False Negative (FN) with different thresholds
τ . We select threshold τ with the best threshold Fβ .

The formula of Fβ shows as follow:

F1 =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP

However, the ratio of positive sample and negative sample
in training and testing samples is much higher than in the real
circumstance, where most places are not similar after all. To
compute the similarity matrices, we select a relative high value
for β to balance samples we select and the real environment.

We plot ROC curves of different sequences in KITTI
odometry benchmark in Fig. 4 and compute the similarity
matrices of sequence 00 in Fig. 5. The details of sample size
and detection results for each seqeunce is in TABLE II. Our
method performs a better result at most of the sequences.

TABLE II: Sample Size and Detection Results of Sequences

Sequence p Size DNN EMD Cos
00 3 m 3777 / 7362 0.975 0.971 0.971
02 3 m 842 / 1551 0.934 0.894 0.882
05 3 m 1810 / 3809 0.944 0.904 0.896
06 3 m 789 / 1692 0.950 0.969 0.969

C. Experiment 3: Efficiency

Our evaluation of computational time is based on the
similarity matrix. Actually, since the similarity matrix is sym-
metric, we only need to compute half of the similarity matrix.
And if a new point cloud comes, the loop closure detection of
it is based on the previous clouds, so our computing process
is from the first row to the last with the robot moves on the
road.

(a) Ground Truth (b) Our Algorithm

(c) EMD Metric (d) Cos Metric

Fig. 5: Experiment 2. Similarity matrices of sequence 00 in
KITTI odometry benchmark with different metrics mentioned
in this paper. Threshold τ is determined by Fβ for different
metric: (b) τ = 1.300 (c) τ = 0.261 (d) τ = 0.046.

In Experiment 3, we first achieve the final representation of
the newcome point cloud with the pre-trained DNN, and build
the kd-tree based on the previous vectorized representations.
Then, we find possible loop closures of it with a certain
threshold τ . The time cost of our method to compute the
similarity matrix of a sequence is from the first transformation
step to the final matrix. For the other two metrics, EMD and
Cos, to compute the similarity matrix, we have to compute the
similarity between each handcrafted image and judge the loop
closures with threshold τ .

We record some relative time costs for sequence 00, as
shown in TABLE III. Actually, for a pair of point clouds, our
method takes a longer time to achieve the similarity than the
other two metrics. But the difference of time cost for different
metrics to build a similarity matrix is large. The advantage
of transforming the point clouds to the final representation
is obvious. The time cost of computing similarity matrix
by using our algorithm is much less than the others. It is
unpractical for EMD and Cos metrics to build kd-tree, while
our representations are meaningful in Euclidean space, and the
kd-tree accelerates the searching speed significantly.

TABLE III: Time Costs of sequence 00

Methods Single Similarity Similarity Matrix
Our Method 0.016 s 81s s
EMD Metric 0.0046 s >26338 s
Cos Metric 0.0001 s >6330 s

D. Experiment 4: Case Study

In Experiment 4, we give examples of correct and failed
detections of loop closure using our method. Actually, the
dynamic objects moving around the robot is unavoidable
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(a) sequence 00 (Bird View) (b) Loop Closure Detection

Fig. 6: Experiment 4. (a) A bird view of the trajectory of
sequence 00. (b) Loop Closure detections are presented with
with certain thresholds τ = 1.300 and p = 3m. It is convenient
to show the results with a slowing change on Z-axis of the
trajectory. Red lines stand for the detection results. We select
one false positive (blue line) for case study, and one false
negative (magenta line) example is also presented.

in urban areas, which may cause false negative detections
using our methods. Besides, a few scenes are hard to be
distinguished from each other if we only utilize the range
distribution information of point clouds, which may cause false
positive results. (See Fig. 6)

For example, in Fig. 7, scenes like these confuse us a
lot. Scene 1 and Scene 2 are the point clouds captured the
poses marked blue in Fig. 6. The two poses are far away
and point clouds are totally different from bird view, but are
considered to be loop closed, because of the range distribution
are similar, and the final vectorized representations are closed
by our methods.

V. CONCLUSION

The loop closure detection in 3D LIDAR data requires a
fast and high precision in real time SLAM system for mobile
robots. Our approach shows that it is possible and convenient
to use convolution neural network to transform the point cloud
to a rotational invariant representation. The transformation
relies on the range distribution information and ring structure
of 3D LIDAR captured by Velodyne sensor. A siamese DNN
is also involved in the transformation. Besides, based on the
final representations, in our algorithm, a kd-tree is proposed
to increase the search efficiency.

The dynamic changes in SLAM system cause lots of trouble
in our methods. So it is supposed to filter the dynamic objects
for loop closure detection in the future work. The intensity
information and the normal vectors of point clouds can also
be utilized for building handcrafted representations.
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