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Abstract— When robots move autonomously for long-term,
varied appearance such as the transition from day to night
and seasonal variation brings challenges to visual place recog-
nition. Defining an appearance condition (e.g. a season, a
kind of weather) as a domain, we consider that the desired
representation for place recognition (i) should be domain-
unrelated so that images from different time can be matched
regardless of varied appearance, (ii) should be learned in a
self-supervised manner without the need of massive manually
labeled data, and (iii) should be able to train among multiple
domains in one model to keep limited model complexity. This
paper sets to find domain-unrelated features across extremely
changing appearance, which can be used as image descriptors
to match between images collected at different conditions. We
propose to use the adversarial network to disentangle domain-
unrelated and domain-related features, which are named place
and appearance features respectively. During training, only
domain information is needed without requiring manually
aligned image sequences. Experiments demonstrated that our
method can disentangle place and appearance features in both
toy case and images from the real world, and the place feature is
qualified in place recognition tasks under different appearance
conditions. The proposed network is also adaptable to multiple
domains without increasing model capacity and shows favorable
generalization.

I. INTRODUCTION

Visual place recognition is a vital task for mobile robots.

Given sequences of images captured at different conditions,

its goal is to find out pair of images corresponding to the

same places. Feature extraction is one of the core problems in

place recognition while changing appearance is a challenge.

Conventional methods use features which are designed to be

robust against small illumination variation like HOG [1] and

SIFT [2], or use statistics of handcraft local features as global

descriptors like DBoW2 [3] and VLAD [4]. However, they

are not able to overcome extreme appearance changes, such

as illumination changes from day to night and the visual

difference in different seasons. Besides, although LiDAR-

based methods [5], [6], [7] are shown to be more robust in

place recognition under such changes, the high-cost prevents

them from widely used.

Recent success in deep learning makes researchers start to

study how to apply deep learning features in place recogni-

tion. Lots of efforts are devoted to supervised feature learning

[8], [9], but the dependence on massive labeled data is hard to

ensure. Thus, self-supervised methods like [10] are preferred

in such a task. In their work, the whole feature is required to
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Fig. 1: Translated and zero-appearance images of Nordland.

Row 1: input images from D1; row 2: input images from

D2; row 3: translated images from D1 to D2; row 4: zero

appearance images of D1. Column 1 to 5: D1 is winter and

D2 is spring; column 6 to 10: D1 is spring and D2 is winter.

be invariant across different appearances. Meanwhile, some

researches like [11] transfer query images to match the style

of database images using neural networks. These methods

show realistic transferred images, but they are only able to

match the two domains used in the training phase. When a

new domain comes, more models are needed. In addition,

[11] extracts features using existing featurization tool [12].

We think such a process is indirect because style-transfer is

unnecessary in place recognition.

In this paper, we set to find a model that can disen-

tangle domain-unrelated and domain-related features of an

image, where the domain-unrelated feature is used for place

recognition (Fig. 1). Specifically, a domain denotes a specific

appearance condition, such as daytime in spring or nighttime

in summer. This idea is motivated by the hypothesis that an

image is composed of place and appearance, where the place

is domain-unrelated content of a scene (e.g. corners or edges

of buildings), while appearance is domain-related properties

(e.g. brightness of sunlight and type of season). Under this

hypothesis, we disentangle place and appearance features

using two encoders, following the widely used autoencoder

structure. To ensure that place features contain only domain-

unrelated content, adversarial training is applied explicitly

among place features. Besides, another adversarial loss is

used to eliminate dependency between place features and

appearance features. The model is trained in a self-supervised

manner without manually aligned data. Finally, place feature

is used as the descriptor in place recognition. Also, the

network is shared across different domains, thus our model is

adaptable to different domains without an increasing number

of parameters. Main contributions of our method are listed

as follows:



• A self-supervised feature learning method is proposed

to disentangle the place and appearance features from

the given image.

• The proposed architecture is designed to be trained with

multiple domains without increasing model complexity.

• A toy case study on MNIST is carried out to validate

our hypothesis. Besides, experiments are taken on two

public datasets and show good performance. We also

open the source code for reproduction 1.

The remainder of this paper is organized as follows: related

work will be discussed and summarized in Sec. II and

our method will be presented thoroughly in Sec. III. We

will introduce the experiments in detail and show results in

Sec. IV. Conclusion will be made in Sec. V.

II. RELATED WORK

Place recognition has been studied for years. Typical

pipeline for place recognition includes global feature extrac-

tion and matching, optionally followed by temporal fusion

[13], among which this paper will focus on the first part.

Handcraft features for place recognition can be classified

as global and local features. Traditional global-feature-based

methods try to find appearance-invariant features, such as

aggregating gradient information using histograms [1] and

computing responses to artificial filters [14]. On the other

side, traditional local-feature-based methods extract local

features [15], [16] as representation and use different statis-

tics strategies [3], [4] to obtain descriptors. However, none

of them is found robust across all environments with extreme

appearance changes, thus not preferable in place recognition.

As deep neural network achieves success in the computer

vision area, researchers in robotics community start to ex-

plore how to integrate deep learning into existing research.

[17] investigate discriminative ability for place recognition of

different layers from AlexNet [18] pre-trained on ImageNet

ILSVRC dataset [19], and they find that features from middle

layers are robust against changing appearance. However,

its performance is not good enough as reported in [10].

[20] use a classification network for location-specific place

recognition and achieve comparable results. This work shows

the potential for the neural network to distinguish places,

but places are fixed once training is finished. Therefore, it

cannot be extended to other scenes. To address this problem,

[21] introduces a differential VLAD component into the

neural network, namely NetVLAD, to compact a feature map

into a descriptor vector, which is optimized by triplet loss.

Labeled data from Google Street View Time Machine are

needed to construct training tuple. [9] uses two datasets that

are manually aligned to illustrate the power of supervision.

However, these supervised methods need massive labeled

data, which might be undesirable in fast deployment.

Another branch of machine learning methods, namely

self-supervised learning, do not rely on aligned data. [22]

apply PCA to raw images or CNN features to obtain in-

variant descriptors. It is reported that components with large

1https://github.com/dawnos/fdn-pr
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Fig. 2: Proposed network architecture. ES : place encoder;

EA: appearance encoder; G: decoder; Dpla: place domain

discriminator; Dapp: appearance compatibility discrimina-

tor; si/ai: place/appearance feature from domain i; xi/x̂i:

input/reconstructed image from domain i; ⊗: concatenate

operation. Any symbol with superscript “′” indicates that it

is sampled or generated from another image of the same

domain.

eigenvalues represent variations in the image. By removing

these components, the remaining information is suitable for

place recognition. [23] use denoising autoencoder to learn

features that can reconstruct original images, while [10] try

to reconstruct HOG similarly. The output of encoders in these

two methods exhibit robustness in place recognition. One

advantage of work by [10] is that their training set is different

from the testing set, demonstrating favorable generalization.

Inspired by the work of style transfer [24], [25], some

researchers try to transfer query images to match the style of

database images (such as [11], [26], [27], [28]), following by

local feature matching, global descriptor matching or dense

matching. For example, [11] transfers nighttime images into

daytime ones, and extract features using DenseVLAD [12].

Each model in these methods is targeted at the two domains

used in the training phase. When adding new domains, new

models are needed, and the number of models increases

exponentially. [29] enhances the pretrained NetVLAD [21]

with semantic information, which is shown to be viewpoint-

invariant. It demonstrates that appearance-based descriptors,

such as the proposed method, can be improved to overcome

changing viewpoints with techniques in [29].

III. ADVERSARIAL FEATURE DISENTANGLEMENT FOR

PLACE RECOGNITION

Under the hypothesis that an image is composed of place

and appearance, our method uses the convolutional network

as a feature extractor to disentangle place and appearance



features. Specifically, autoencoder is used as the backbone.

An image is embedded into feature space, and the feature

is transformed back to image space. In this paper, part of

feature encodes place and other encodes appearance, which

are disentangled into place space S and appearance space A
respectively.

We begin from 2 domains, denoted by D1 and D2. As

shown in Fig. 2, for any image xi ∈ Di(i = 1, 2), place

encoder ES and appearance encoder EA are used to extract

place feature si = ES(xi) and appearance feature ai =
EA(xi) respectively. Decoder G jointly leverages these two

features to produce reconstructed image x̂i = G(si, ai)
(Sec. III-A). To ensure domain-unrelated property of place

latent space, place domain discriminator Dpla is introduced

for adversarial training (Sec. III-B). Besides, appearance

compatibility discriminator Dapp is designed to eliminate

the dependency between these two features (Sec. III-C).

A. Reconstruction Loss

As in many self-supervised feature learning literature,

encoders (ES and EA) and decoder G are used to re-

construct original input image cooperatively. To measure

reconstruction quality, L2 distance is used, thus the overall

reconstruction loss is expressed as:

Lrecon =
1

2
Ex1∼p(x1) ‖G(ES(x1), EA(x1))− x1‖

2
2 +

1

2
Ex2∼p(x2) ‖G(ES(x2), EA(x2))− x2‖

2
2

(1)

where xi is image sampled from some prior distribution

p(xi) of domain Di.

B. Place Domain Discriminator

Pure autoencoder cannot guarantee that the place feature

only captures domain-unrelated information. It may contain

appearance content, which is not penalized by reconstruction

loss. To overcome this problem, we use adversarial learning,

where place domain discriminator Dpla is introduced to

constrain place features to lie in the same latent space. In

each training iteration, two place features are extracted from

two images, which may come from the same or different

domains. Dpla tries to tell whether they are from the same

domain, as shown in Fig. 2 (top right). For example, given

place feature s1 from domain D1, we sample the other two

place features s′1 and s2 from D1 and D2 respectively. The

loss function for this case can be written as

L
pla,1
D =

1

2
Es1∼p(s1),s′1∼p(s1)[(Dpla(s1, s

′
1)− 1)2]+

1

2
Es1∼p(s1),s2∼p(s2)[(Dpla(s1, s2)− 0)2]

(2)

where p(si) is derived by ES(xi), xi ∼ p(xi). The discrimi-

nator Dpla outputs 1 if the given two place features are from

the same domain and 0 for those from different domains.

Simultaneously, place encoder ES are encouraged to

confuse Dpla by outputting place features following the

same distribution across domains, so that they are invariant

against varied appearance. The autoencoder is trained in an

adversarial paradigm against Dpla, and its loss function can

be expressed as:

L
pla,1
Adv =

1

2
Ex1∼p(x1),x′

1
∼p(x1)[(Dpla(ES(x1), ES(x

′
1))− 0)2]+

1

2
Ex1∼p(x1),x2∼p(x2)[(Dpla(ES(x1), ES(x2))− 1)2]

(3)

Eq. (2) and (3) use least square adversarial loss [30], where

L2 loss is used without sigmoid function. It’s worth noticing

that ES(x1), ES(x
′
1) and ES(x2) in Eq. (3) are in fact s1,

s′1 and s2 in Eq. (2). We replace them to remind the readers

that ES is fixed when updating Dpla (Eq. (2)), while Dpla

is fixed when updating ES (Eq. (3)).

Eq. (2) and (3) are formulated for the case that the first

input image is sampled from D1. When the first image is

from D2, L
pla,2
D and L

pla,2
Adv and can be derived by exchanging

two domains in Eq. (2) and (3).

C. Appearance Compatibility Discriminator

Only applying place domain discriminator is not enough.

To see it, one can assume that output features of EA might

carry some information about the place. In this case, the

combination of si and ai are still able to reconstruct the

original image, and Dpla is not affected. However, place

and appearance features are not independent. To eliminate

dependency of those features, we propose appearance com-

patibility discriminator Dapp to tell if given place and

appearance features are independent.

As images x1 and x2 sampled from different domains

are independent, place feature s1 = ES(x1) from D1 and

appearance feature a2 = EA(x2) from D2 are also indepen-

dent. On the other hand, if place and appearance features

are not disentangled, s1 = ES(x1) and a1 = EA(x1) from

the same image x1 are not independent. Now that we have

positive and negative pairs for Dapp, which can be leveraged

to construct loss function for Dapp:

L
app,1
D =

1

2
Es1,a1∼p(s1,a1)[(Dapp(s1, a1)− 1)2+

1

2
Es1∼p(s1),a2∼p(a2)[(Dapp(s1, a2)− 0)2]

(4)

where p(s1, a1) is given by (ES(x1), EA(x1)), x1 ∼ p(x1),
and p(a2) is given by EA(x2), x2 ∼ p(x2).

Similar to Sec.III-B, encoders ES and EA are encour-

aged to confuse Dapp by outputting independent place and

appearance features. When Dapp fails, place and appearance

features will be independent. Again, the loss function for

autoencoder can be expressed as

L
app,1
Adv =

1

2
Ex1∼p(x1)[(Dapp(ES(x1), EA(x1))− 0)2]+

1

2
Ex1∼p(x1),x2∼p(x2)[(Dapp(ES(x1), EA(x2))− 1)2]

(5)

Similarly, we can have L
app,2
D and L

app,2
Adv .

Like [10], we generate labels for Eq. (2)-(5) with un-

aligned data, thus we claim that the proposed method is

self-supervised.



D. Extension: Multiple Domains Case

The autoencoder in our method is shared across do-

mains. Besides, discriminators use information between two

domains, and they are domain-unrelated. Thus, it is easy

to extend to multiple domains. Assume that there are N

domains, denoted by D1,D2, · · · ,DN . In each training it-

eration, two domains Di and Dj are randomly drawn, where

i, j = 1, 2, · · · , N and i 6= j. Then images from Di and Dj

are sampled respectively from training set, which are input

data of encoders (Eq. (3)). In testing phase, images from

different domains are fed into ES to obtain place features.

One advantage of our method is that only one model is

needed in a specific area for long-term deployment. When

collecting new data with different appearances in the same

area, one can improve the model by retraining with new

data without additional parameters. On the contrary, style-

transfer-based methods need new models to transfer new

data into known style. When new data come periodically,

this will lead to exponentially increasing parameters. Thus,

our method can be plugged into any long-term localization

framework [31], [32] as the feature extractor.

E. Implementation and Training

Training Strategy During training, discriminators (Dpla

and Dapp) and autoencoder (ES , EA and G) are updated

alternatively by back-propagation:

min
Dpla

L
pla,1
D + L

pla,2
D (6)

min
Dapp

L
app,1
D + L

app,2
D (7)

min
ES ,EA,G

Lrecon + λ1(L
app,1
Adv + L

app,2
Adv ) + λ2(L

pla,1
Adv + L

pla,2
Adv )

(8)

where λ1 and λ2 are hyper-parameters to balance recon-

struction and disentanglement. In case of two domains,

images x1, x′
1, x2, x′

2 are drawn from two domains in each

training iteration. For multiple domains, images are drawn

as described in Sec. III-D.

Network Architecture Encoders (ES and EA), decoder

G and discriminators (Dapp and Dapp) are all convolu-

tional networks. They are shared among different domains.

The autoencoder is bottleneck architecture, where encoders

downsample an image as two feature maps and the decoder

jointly upsamples them back to the original resolution. The

appearance feature is a vector of dimension nA. Input fea-

tures of discriminators, (si, sj) or (si, aj), are concatenated

together before going into the discriminators, and they are

downsampled to one dimension as output.

Place Recognition To demonstrate the discriminative abil-

ity of the learned features, we use place features as descrip-

tors in place recognition. Specifically, given a sequence of

already observed images, we extract their place features by

feeding those images into place encoder ES , constituting

the database feature set {sDB,i}, where i = 1, · · · , NDB

and NDB is number of database images. When a new

query image comes, the query feature sQ is extracted from
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(c) Example translation between different domains. Each block
contains the first input image (upper left), the second input image
(upper right), the translated image (lower left) and the zero-
appearance image (lower right). The first input images of the same
column share the same domain, while the second input images of
the same row share the same domain.

Fig. 3: Visualization of features and image translation be-

tween different domains of toy case experiment. Fig. 3a and

Fig. 3b are visualization of place and appearance features

using t-SNE respectively, where labels are colors (left, 1 ∼ 7)

and digits (right, 1 ∼ 10).

ES . Then, the best-matched image xm in the database is

determined by

m = argmax
i=1,··· ,NDB

(
sQ

‖sQ‖
·

sDB,i

‖sDB,i‖
) (9)

IV. EXPERIMENTAL RESULTS

We firstly carry out a toy case experiment to validate our

hypothesis (Sec. IV-A). Later, experiments are conducted

on two real datasets to illustrate its basic performance

(Sec. IV-B) and generalization ability (Sec. IV-C) under place

recognition scenario with two domains. The last experiment

demonstrates an extension to multiple domains (Sec. IV-D).

A. Toy Case

We use MNIST, a handwritten digits dataset, to validate

our hypothesis that image is composed of place and appear-

ance. To simulate different domains, data images are colored

randomly in 7 colors. In this case, place refers to the digit,

while appearance refers to the color. Sample digits can be

seen in Fig. 3c. Dimension of appearance feature nA is 8.

In training, λ1 and λ2 are set as 0.1.

We firstly investigate disentanglement by visualizing place

and appearance features with t-SNE [33] (Fig. 3). As shown

in Fig. 3a, place features lie in the manifold where digits

can be distinguished easily, while colors are randomly dis-

tributed. On the other side, appearance features are clustered

by colors, and they are unrelated to digits. These results



Method Aligned?
Nordland Alderley

AUC Accuracy AUC Accuracy
DBoW2 ✗ 0.09 1.33% 0.00 0.22%

HOG ✗ 0.17 17.0% 0.02 1.85%
[10] ✗ 0.28 15.8% 0.10 1.26%

NetVLAD ✗ 0.22 19.9% 0.02 2.65%
Ours ✗ 0.70 49.4% 0.34 21.0%

[9] ✓ N/A1 92% N/A1 7.82%
NetVLAD ✓ 0.74 83.0% 0.13 15.8%

1 Not Available (N/A) because they do not use AUC as criteria.

TABLE I: AUC and accuracy of different methods on Nord-

land and Alderley.

Methods ToA1?
Night vs Day Day vs Night

AUC Accuracy AUC Accuracy
DBoW2 ✗ 0.00 0.22% 0.00 0.13%

HOG ✗ 0.02 1.85% 0.02 0.43%
[10] ✗ 0.10 1.26% 0.02 1.02%

[9] ✗ N/A2 1.73% N/A2 N/A2

[11] ✗ 0.01 0.6% 0.00 0.3%
NetVLAD ✗ 0.04 5.56% 0.02 2.65%

Ours ✗ 0.13 8.28% 0.10 3.17%

[9] ✓ N/A2 7.82% N/A2 N/A2

NetVLAD ✓ 0.16 19.2% 0.13 15.8%
Ours ✓ 0.39 23.7% 0.34 21.0%

1 Short for Train on Alderley.
2 Not Available because they do provide these results and the code.

TABLE II: Generalization results. Models except for the last

3 rows do not see Alderley before testing. Results in the last

3 rows are trained on Alderley, and they are placed here for

comparison. We also try different orders of input domains.

For example, “Night vs Day” means D1 is nighttime and D2

is daytime.

illustrate that our method can effectively disentangle place

and appearance features in this toy case.

To understand better what has place feature learned, the

vector of appearance feature is set to zero, and the out-

put of the decoder is displayed in Fig. 3c (called zero-

appearance image). One can see that when the appearance

feature is fixed, all decoded images have the same color.

It illustrates that the decoupled place feature contains only

place information (digit) of any input digit image. Fig. 3c

also presents reconstructed images decoded from place and

appearance features of different domains (called translated

image). Specifically, the decoder combines the place feature

from the first input image and appearance feature from the

second input image to reconstruct digit. Results show that the

digits of translated images are determined by place features,

while colors are controlled by appearance features.

B. Basic Performance

We use Partitioned Nordland Dataset [34] and Alderley

Day/Night Dataset [13] to validate our method in place

recognition. Nordland is collected on a train in four seasons

(spring, summer, fall, and winter), which are treated as four

domains in this paper. Alderley is captured by a camera
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Fig. 4: Distance matrixes of place feature (left) and appear-

ance (right) feature. Cosine distance is used.

mounted in a car in two sessions, one rainy nighttime, and

one sunny daytime. Ground truths for both datasets are

determined by GPS, and the partition of training and testing

sets follows [9]. A match is considered correct if the distance

between predicted and ground truth images is less than 3

frames, as used by [9]. Two criteria are used in quantity

analysis: (i) AUC (Area Under Curve) and (ii) accuracy

(overall true positive rate). The dimension of appearance

feature nA is 8. In training, λ1 and λ2 are set as 0.003 and

0.01 respectively.

To demonstrate basic performance, the first experiment

is targeted at two domains case. For Nordland, winter and

spring are chosen as D1 and D2. For Alderley, both domains

are used, where nighttime and daytime are D1 and D2

respectively. In testing, images from D1 are used to build

a database, while those from D2 are seen as query images.

As a comparison, several methods are used to illustrate

the discriminative ability of our learned features. We use the

model provided by [10] without retraining on Nordland or

Alderley, as done in their paper. Besides, the implementations

of DBoW and HOG in [10] are used. For [9], results are

obtained from their paper as they do not provide their code.

For NetVLAD, we not only validate it by using the pretrained

model from [21], but also retrain it on those two datasets

for comparison. Results are shown in Tab. I. Our method

shows large improvement over classical features including

DBoW2 and HOG in both datasets. It is also better than

the self-supervised method by [10]. The supervised methods

like [9], [21] can obtain better performance in some datasets

(such as Nordland), but it highly depends on the quality of

ground truth. By watching images frame by frame, we find

that two domains in Alderley dataset also have perspective

differences, due to the motion characteristic of a car (such

as changing lane). That’s why our method exhibits higher

accuracy than [9] and [21] in Alderley.

To validate that appearance features only contain place-

unrelated information, we plot the distance matrix across

appearance features of two domains in Nordland (Fig. 4b).

As a comparison, we also plot the matrix of place features

(Fig. 4a). It can be seen that the appearance feature shows

no difference in different places, while the place features are

more meaningful in the context of place recognition.

Similar to Sec.IV-A, some translated and zero-appearance

images from Nordland dataset are present in Fig. 1. Although



D1

D2 Spring Summer Fall Winter Mean

Spring - 0.86/0.92 0.92/0.94 0.78/0.73 0.85/0.86
Summer 0.86/0.91 - 0.98/0.98 0.68/0.71 0.84/0.87

Fall 0.88/0.92 0.98/0.98 - 0.66/0.76 0.84/0.89
Winter 0.70/0.59 0.64/0.58 0.63/0.63 - 0.66/0.60

(a) AUC.

D1

D2 Spring Summer Fall Winter Mean

Spring - 70.3%/77.7% 78.3%/81.3% 56.3%/52.3% 68.3%/70.4%
Summer 70.5%/77.8% - 96.1%/96.5% 44.8%/46.7% 70.5%/73.7%

Fall 76.9%/80.1% 96.2%/97.0% - 43.7%/50.2% 72.3%/75.8%
Winter 49.4%/37.9% 39.1%/38.6% 41.5%/40.0% - 43.3%/38.8%

(b) Accuracy.

TABLE III: Result of multiple domains case. Each item contains criterion (AUC or accuracy) of two/multiple domains.

Number of parameters: 213.6M/17.8M (two/multiple domains).

the reconstructed images are not as realistic as in [11], it is

acceptable because our goal is to obtain disentangled features

instead of image reconstruction or style-transfer. From the

last row, we can see that the learned place feature is unrelated

to different appearance conditions.

C. Generalization Performance

We also experiment to see the generalization performance

of our disentangled features. Models trained on datasets

other than Alderley are used to perform place recognition on

Alderley (Tab. II). Methods can be divided into 3 categories.

The first kind of method (DBoW, HOG, NetVLAD, and [10])

is designed for general purposes. The second one ([11]) is

targeted at the same appearance conditions (daytime and

nighttime) but trained with data from other places from a

different dataset (Robotcar [35]). The third one is trained in

different appearance conditions and places.

It is found that our method achieves the highest perfor-

mance. Models by [9], [10] and [21] try to learn unified

features, which is, in fact, hard to fulfill across domains.

Thus, when they are transferred to a new domain, the features

are not as robust as ours. The accuracy of our method

without training on Alderley is even slightly higher than

the method by [9] with Alderley as the training set. This

shows that our model is as robust as supervised learning

without disentanglement. In comparison with [11], one can

find that our method is much stronger. It is because [11]

tries to find invariant representation in image space. Our

method directly constrains the features, which is more useful

in finding invariant features for place recognition. Also, style-

transfer-based methods maybe not good for generalization, as

error built on the image requires the quality of image details,

which can be less useful for place recognition. These results

verified the superior generalization of the proposed method.

D. Multiple Domains

To show that the proposed network is easy to adapt to

multiple domains, four domains from Nordland are used

to train a unified model, following the training strategy

described in Sec. III-E. AUC and accuracy are computed for

the testing set of every two seasons from Nordland using this

model. Besides, to see benefits brought by fusing multiple

domains, we also trained a two-domains model for every two

seasons and compute those criteria.

From Tab. III, we can see that by fusing more domains,

the model can get comparable AUC and accuracy in most

of the time. We should notice that the model trained from 4

domains has the same number of parameters as one model

trained from 2 domains. On the contrary, with only two-

domain models (such as [24], [25]), we have to train 12

networks. Thus, by fusing more domains, our method can

achieve comparable results without increasing the capacity

of the model.

V. CONCLUSION

In this paper, we propose a self-supervised feature learning

method to disentangle the place and appearance features,

and the place feature is leveraged in the place recognition

task. An autoencoder, including place encoder, appearance

encoder, and decoder, is trained as a self-supervised feature

extractor. To make place feature domain-unrelated, place do-

main discriminator is proposed. Besides, appearance compat-

ibility discriminator is used to eliminate dependency between

place and appearance features. We start from a toy case

to illustrate the disentanglement effect. Experiments on real

datasets show that the disentangled place feature is suitable

for the place recognition task. It achieves comparable results

to several existing methods. We also present the generaliza-

tion ability of our method. An extension strategy is shown

to prove that our method is easy to add new domains, which

is also found to be beneficial to reduce model complexity

without sacrificing place recognition performance.
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