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Abstract
Long term mapping and localization are the primary components for mobile robots in real world application deployment, of
which the crucial challenge is the robustness and stability. In this paper, we introduce a topological local-metric framework
(TLF), aiming at dealing with environmental changes, erroneous measurements and achieving constant complexity. TLF
organizes the sensor data collected by the robot in a topological graph, ofwhich the geometry is only encoded in the edge, i.e. the
relative poses between adjacent nodes, relaxing the global consistency to local consistency. Therefore the TLF is more robust
to unavoidable erroneous measurements from sensor information matching since the error is constrained in the local. Based
on TLF, as there is no global coordinate, we further propose the localization and navigation algorithms by switching across
multiple local metric coordinates. Besides, a lifelong memorizing mechanism is presented to memorize the environmental
changes in the TLF with constant complexity, as no global optimization is required. In experiments, the framework and
algorithms are evaluated on 21-session data collected by stereo cameras, which are sensitive to illumination, and compared
with the state-of-art global consistent framework. The results demonstrate that TLF can achieve similar localization accuracy
with that from global consistent framework, but brings higher robustness with lower cost. The localization performance can
also be improved from sessions because of the memorizing mechanism. Finally, equipped with TLF, the robot navigates itself
in a 1km session autonomously.
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1 Introduction

The reliable mobility of the robots is a research focus for
decades, of which the primary difficulty is to localize the
robot. Addressing this problem, the most important solution
is to build a global consistent metric map, and then localize
the robot by comparing the acquired sensor data to the map
(Dissanayake et al. 2000; Thrun and Montemerlo 2006; Fox
et al. 1999; Montemerlo et al. 2002; Kurt Konolige 2008;
Mur-Artal et al. 2015). This class of solutions pushed a sig-
nificant step for mobile robots toward real world application
with the satisfactory accuracy and reliability in those rela-
tively stable applications. When extending these solutions to
long-termoperation, dynamic changes of environmentsmake
it hard to achieve global consistency, as can be seem in Fig. 1.
Lots of efforts have been made to stitch multiple sessions of
mapping into one global frame, so that the robot can localize
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Fig. 1 The ground truth and the global poses optimized by ORB-
SLAM. With the robot keeping similar trajectory in two sessions, the
global pose output by ORB-SLAM is referred to clarify the vulnerabil-
ity of global consistency, also the advantages of relative configuration.
Compared with the laser ground truth, the resultant trajectories are not
accurate, which means the global coordinates defined by ORB-SLAM
is not coincident with the global coordinates defined by laser and GPS.

In addition, although the robot actually goes through the similar path in
both sessions, the final trajectories maximally gives about 50m distance
in the same physical place, indicating that the global coordinates is not
coincident between the two sessions, even they are processed in one
optimization. The main reason for this is the occurrence of unavoidable
erroneous observations during the sessions. The circled region corre-
sponds to the circled part in Fig. 7. a Dawn. b Noon. c Evening

itself across sessions (Mcdonald et al. 2013; Newman et al.
2009). This solution,when correct, inherits all the advantages
the global consistent framework have. However, as it calls
for highly accurate alignment even between two sessions
with unavoidable changes, and its complexity is related to
the duration of operation, it cannot be easily achieved, espe-
cially in large facilities or outdoor environment. These two
extremely difficult requirements prevent the solution from
deployment in long term. On the other hand, topological
mapping and localization are presented to reduce the require-
ment of accurate metric (Angeli et al. 2009; Cummins and
Newman 2008; Milford and Wyeth 2012; Lowry et al. 2016;
Churchill and Newman 2013). In this solution, the sensor
data are organized as a graph with nodes and edges encod-
ing places and adjacencies. The localization thus becomes
a problem of image retrieval, that only IDs of the matched
images are given,without accuratemetric information.When
only the topological-level navigation is required, this solution
is sufficient, while for the robot navigation calling for metric
guidance, this solution is inappropriate. Churchill and New-
man (2013) explores the organization of sessions in one graph
to include more variations for higher success rate of localiza-
tion, but in their work,metric only existedwithin one session,
thus the successful localization inmultiple sessions cannot be
fused. In some studies, the metric information was inserted
into the topological graph (Tully et al. 2012; Konolige et al.
2010), but the solutions refer to the global consistent map to
build the topological graph, failing to relax the requirements
of accurate alignment and growing complexity.

In this paper, as shown in Fig. 2, our framework addresses
the challenges by introducing the local metric into the topo-
logical graph, so that robot can localize and navigate itself
in the environment without calling for the expensive global
consistency, constrain the bad effect of getting erroneous

Fig. 2 The idea of the proposed topological local-metric framework
(bottom) given the 2-day evolving environment (top). There is a house,
a bridge and two trees in the environment. The icons of sun and cloud
indicate for the weather. Assume that we have a sensor that can measure
the metric relation between two objects. Each node in the framework
indicates for a submap describing the local environment with no global
coordinates, while the edges between the nodes encode the geometric
(geographic) information. During the mapping, error in relative mea-
surement may happen caused by sensor error, or incorrect matching in
front end, say, the relative observation in red. As the relative measure-
ment is saved instead of global coordinates, the framework prevents
the erroneous observation from affecting the other edges in the map,
unlike the global consistency framework, in which the global poses of
all nodes are affected by introducing only one erroneous observation.
Besides, the evolution of the environment is recorded in the map, which
is expected to be with stronger localization capability in the following
days as the bridge in both cloudy and sunny condition are learned by
the robot (Color figure online)

observations in the local, and keep the complexity constant,
raising the reliability of the system. Besides, on the top of this
framework, a lifelong learningmechanism is proposed by let-
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ting the robot memorize the environmental changes to boost
its performance of localization across multiple sessions, fur-
thermore increasing the robustness against the uncertainty
from the environment. In addition, the proposed method-
ology is independent of sensor types, which means laser
scanner and vision are both supported by only modifying
the way of alignment. Thus, the framework can be consid-
ered as the basis for more reliable robotic movement. The
contributions of the paper can be summarized as follows:

– A topological local-metric framework (TLF) is proposed
to organize and manage the sensor data collected by
the robot across sessions. This framework combines the
topological and metric maps in a unified graph.

– Algorithms of localization and navigation on the TLF
are introduced for the robot to perform movement when
global coordinates does not exist.

– A mechanism for robot to memorize the unvisited or
changed places is presented to add and remove infor-
mation in the TLF, so that the robot can have a memory
of the changing environment across sessions.

– Based on vision and laser sensors, we demonstrate the
effectiveness and performance of the proposed frame-
work in challenging outdoor navigation in long-term
21-session runs.

The remainder of the paper is organized as follows: In
Sect. 2, the related works of robotic localization are reviewed
and analyzed. In Sects. 3 and 4, the formulation of TLF and
the algorithm of localization and navigation upon it are intro-
duced, followed by the robot memorizing mechanism for
lifelong learning based on the TLF in Sect. 5. Implementa-
tion details are illustrated in Sect. 6, while the experiments
evaluating the performance of the proposed methodology is
presented in Sect. 7. The conclusion is presented in Sect. 8,
which completes the paper.

2 Related works

Localization and mapping of the robot has been studied for
long time, named as simultaneous localization and mapping
(SLAM), beginning from building a globally consistent map
usingfilter based solutions, including extendedKalmanfilter,
extended information filter and particle filter (Dissanayake
et al. 2000; Lauer and Stein 2015; Montemerlo et al. 2002;
Eustice et al. 2006). However, these filter based solutions
are argued to be inconsistent as re-linearization cannot be
conducted (Huang and Dissanayake 2007). To avoid this
problem, two branches of methods are developed. First, the
graph based SLAM is proposed to state the trajectory of
the robot and relative sensor alignment as nodes and edges,
then the maximum likelihood estimation of the trajectory is

solved by iterative non-linear optimization algorithms like
Gauss–Newton or Levenberg–Marquardt, of which the solu-
tion is globally consistent as the re-linearization happens in
each iteration (Thrun andMontemerlo 2006; Kummerle et al.
2011; Mur-Artal et al. 2015; Dellaert and Kaess 2006; Kaess
et al. 2008). Another solution is to improve the consistency
of the filter based solutions by fixing the linearization point
when evaluating Jacobian at the first time, or finding the opti-
mal linearization point by constrained optimization (Huang
et al. 2009, 2010). These efforts significantly push the local-
ization and mapping into general applications, but their
growing complexity and vulnerability to erroneous obser-
vation exist as challenges. To deal with the first challenge,
graph reduction is introduced into SLAM to control the com-
plexity of SLAM with respect to the workspace area (Wang
et al. 2015, 2013; Carlevaris-Bianco et al. 2014). The second
challenge is investigated by constructing robust backend to
identify erroneous observations (Latif et al. 2013; Lee et al.
2013). Thesemodules improve the performance of the global
consistent solutions, as a cost, the number of tunable parame-
ters is large, and some of them do not have directive physical
explanation. More importantly, the global optimization still
exists, thus the challenges are relieved, but not eliminated.

To relax the large complexity of building a global con-
sistent map, topology is considered by regarding each node
being a submap to reduce the scaling problem, and the plan-
ning on the topologicalmap ismuchmore efficient (Konolige
et al. 2011; Angeli et al. 2009; Rybski et al. 2008). In these
solutions, each node in the topology denotes a metric pose,
which means that the topological graph calls for global opti-
mization, thus still experiences the same risk as the global
consistent solutions. Based on such topological map, there
are two ideas of localization. One is to keep the metric pose
in the global coordinates using Bayesian filtering or local
optimization (Tully et al. 2012; Blaer and Allen 2002; Liu
et al. 2012). The other is to find the topological localiza-
tion through place recognition (Lowry et al. 2016; Churchill
and Newman 2013; Milford and Wyeth 2012; Cummins
and Newman 2008). The latter has stronger performance
when the environment change happens, since the image level
descriptors are more invariant than the feature point descrip-
tors. The weakness is that this method cannot provide metric
localization, thus cannot act as the feedback for robot naviga-
tion. Its application lies in the semi-automatic driving, rather
than the fully autonomous robots. Simhon and Dudek (1998)
used a similar map representation to ours, but it concentrated
on map partition, while we focus on multiply sessions fusion
for long-term localization. For more recent studies, some
works find that the global consistency can be fully elim-
inated by only keeping the local metric, like Furgale and
Barfoot (2010) and Krüsi et al. (2015). Their methods are
close to our TLF, but they aim at the teach session repeti-
tion. A similar work to our framework is Paton et al. (2016),
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they used multiple sessions as bridging experience to fill the
gap between the repeating session and the teaching session,
which strongly improved the localization performance. The
main difference between their work and ours is still that we
have no teaching session in the framework, therefore sessions
without any edges can be stored in our framework for local-
ization, expanding the framework to a completed localization
and mapping framework for long-term operation.

Dealingwith the environmental changes during the robot’s
operation is also a topic for years. To resolve the transient
dynamics, RANSACbased alignmentmethods are employed
to remove outliers (Mur-Artal et al. 2015). Choi and Maurer
(2016) tried to exploit more information from sensor input by
integrating moving object tracking into localization module.
Wolf and Sukhatme (2005) maintained two occupancy grids
to distinguish static and dynamic objects in environments
and used the former grid for localization. The more chal-
lenging situation is the low dynamic change, like structural
or appearance changes. One solution is to track the environ-
mental change so that the out-of-dated information can be
pruned from the graph (Wang et al. 2016; Walcott-Bryant
et al. 2012; Konolige et al. 2010). These methods are built
upon the global consistent map so that the sensor data col-
lected at different time from the same place can be compared
to update the map. Another solution is to find more robust
algorithm to align the two views under different disturbances,
such as foreground segmentation, construction of the patch
features, building illumination invariant color space or ren-
dering a pre-surveyed map (Corcoran et al. 2011; Mcmanus
et al. 2014; Pascoe et al. 2015; McManus et al. 2015; Paton
et al. 2017). These alignment methods focus on providing
better localization and thus can be a powerful localizer within
our framework.

3 Map representation

We first introduce the map representation in TLF. The basic
backbone of the TLF is a graph defined as M = {N , E}
where N is the set of nodes and E is the set of edges. For
each ni ∈ N , the corresponding properties are defined as
ni = {si , li , Ni }:

– si is a submap built by the sensor data collected around
this node. The submap is a concept, which can be either
a real submap constructed using sensor data collected at
multiple-steps, or a pure sensor measurement collected
at one step. For example, an occupancy grid map can be
defined as si , and a set of images can also be si . The
coordinate frame of the submap is set at the first pose
collecting the sensor data used for building this submap.

– li is a localizer responsible for data alignment which is
a function pt,i = li (dt , si ) with current sensor measure-

ment dt and the submap si as the input, the pose pt,i of
the robot in si as the output. As an instance, iterative clos-
est point localizer can be applied as li to acquire pt,i by
aligning the current captured point cloud dt to the point
cloud submap si (Besl and Mckay 1992).

– Ni is a proxy for other properties corresponding to the
node. In this paper, we assigned Ni with options includ-
ing place descriptor for loop closure, differential GPS
(DGPS) and the date/time (DT) when the submap is
created. The place descriptor is employed for global
localization, the DGPS for ground truth building, and DT
of submap for navigation, which is introduced in sequel.

Then for each ei j ∈ E connecting the neighboring nodes ni
and n j , we define ei j = {pi, j , Ei, j }:

– pi, j is a rigid relative pose between node ni and n j ,
which can be obtained from the odometry like sensor
measurement during the creation of the graph, includ-
ing wheel odometry, inertial measurement unit, or visual
odometry. These sensor measurements are all accurate in
local short-time window, thus the pi, j is considered suf-
ficient to encode the local geometry. Another source of
the edge is the result of localizer or loop closure, which
is determined by the sensor data alignment, thus is also
accurately evaluated in local metric.

– Ei, j is a proxy for other properties corresponding to the
edge, which is also application dependent. In this paper,
vi, j is assigned to Ei, j as one property, which is the
traversability between node i and node j . This value is
important especially in vision based navigation. When
the camera is front looking and the robot capturing the
sensor data moves from node i and node j , vi, j tells the
path from node i to j is unidirectional.

When there are multiple sessions, or multiple robots, their
corresponding mapsM could be merged together by finding
the loop closures using global localizer (Cummins and New-
man 2008) or aided by external sensor, like GPS. We only
store the relative measurements but no global poses, thus
no unified global coordinates and no global optimization is
required. The difference across different versions of the map
only occurs in adding or removing of the nodes, no geo-
metric information is modified, as they are raw alignment
results. It leads to an additional advantage if merging and
optimization are required for visualization, as in our frame-
work, the utilization of the maps and the optimization of
the maps are totally decoupled, thus the latter can run asyn-
chronously using cloud computation. Even though multiple
robots are using the different versions of maps, the position-
ing information are still communicable. By eliminating the
real-time requirement for synchronization, the connections
across multiple maps can thus be discovered and verified
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using slow but accurate algorithms, even the manual cura-
tion.

The core difference between our TLF and pose graph is
that no global pose is required in TLF. When global poses
are needed, global consistent optimization is necessary. The
pose of the same physical place thus may change each time
a new observation is acquired, making the older versions of
maps unusable. Finally many problems occur: the erroneous
alignment may ruin the whole map, the growing complexity
leads to the growing computational time, and the necessary
real-time synchronization of maps in all robots to avoid the
out-of-dated positioning communication. While for TLF, the
geometry are only encoded in the edge, which cannot affect
the geometric information in other edges, constraining the
erroneous alignment in local. Besides, a new node is added
into TLF by simply connecting it with the existing nodes
using the relative poses as edges, thus the complexity can
be kept as constant. As the process of the mapping is much
simpler than the global consistent framework, the implemen-
tation is more directive, also lowering the engineering risk.
In a word, the core feature of TLF is that: it takes the front-
end output directly to satisfy the navigation stage, skipping
the intermediate stage of constructing global consistent pose
graph, which we think is over-qualified for navigation.

4 Localization and navigation

TLF provides the map representation for the mobile robots to
move around the workspace with improved robustness and
less complexity. The real movement relies on the localization
and navigation algorithms. Localization outputs the relative
pose denoted as pt,i , meaning that the pose of the robot at
the t th timestep with respect to the i th submap. Obviously,
this localization process consists of finding a node i and then
calling the corresponding localizer li to estimate the rela-
tive pose. For navigation, as the metric is only contained in
local coordinates, the general global metric planner cannot
be employed. To navigate on TLF, we propose a double-layer
planner with topological and metric planning being the top
and bottom layer, respectively. This algorithm is inspired by
the graph representation of a manifold (Liao et al. 2016),
which defines Euclidean measure on the tangent plane at
each point instead of a unified metric.

4.1 Relative localization

As defined above, each node in M is assigned with a local-
izer, which gives the pose of the robot relative to this submap
through aligning the current sensor data to the submap. Thus
there can be multiple relative pose estimations by activating
the localizers in a subset of nodes around the current posi-
tion, denoted as {pt,k |k ∈ Q(t)}, where Q(t) is the nodes

Fig. 3 Example formulation of the relative localization with Q(t) indi-
cated by blue subgraph (CQ ), which is the 3-nearest neighborhood of
the current pose, pointed by red arrow. The odometry sliding window of
length l = 2 is indicated by green subgraph (Codom ). The orange is the
output of localizers (Cloc). These edges and nodes are included in the
optimization. The gray node and black edges are not included (Color
figure online)

subset. These relative poses form an edge set Eloc. Then we
can formally define the process of our relative localization
pipeline: first, a topological predictive selector finds the Q(t),
second each node nk in Q(t) apply its localizer lk to generate
Eloc, and finally a small scale pose graph optimizer is applied
to find relative localization. An illustration can be found in
Fig. 3.

We introduce the localization from the last step. Given
Q(t), we build a subgraph G with nodes including current
timestep nt and its previous l timestep {nt−1, . . . , nt−l}, as
well as all ones in Q(t). The edges in G include the cur-
rent odometry edges {Eodom}, like et−1,t , the map edges EQ
between nodes in Q(t), and the localizer edges Eloc. On the
subgraph G, we formulate the three cost functions for three
kinds of edges:

Codom =
∑

eτ−1,τ ∈Edom
‖pτ−1,τ − eτ−1,τ (pτ−1, pτ )‖2�d

(1)

CQ =
∑

ei, j∈EQ

ρ(pi, j − ei, j (pi , p j ))�q (2)

Cloc =
∑

eτ,k∈Eloc
ρ(pτ,k − eτ,k(pτ , pk))�l (3)

where ρ(·) is the robust kernel, which is Huber kernel in this
paper, pwith single subscript is the unknown poses variables
to be estimated anchored at a node among Q(t). The subscript
�∗ indicates the weighted value, such as ‖e‖2� = eT�−1e,
and ρ(e)� = ρ(eT�−1e). The weights � are also referred
as inverse information matrices in SLAM community. These
variables are estimated by optimization as

p̂ = argminCodom + CQ + Cloc (4)

where p̂ is the final estimates. Note that the edges in the
submap and the localizers may be generated by loop clo-
sure, thus probably erroneous, so that the robust kernel is
only assigned to the terms in CQ and Cloc. Since the graph is
built in local, the odometry constraints Codom is a strong and
relatively accurate prior to regularize the optimization com-
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pared to the global optimization, so the robust kernel under
this context is prone to eliminate the bad effect of erroneous
alignmentwith higher probability. Even the robust estimation
does not identify the erroneous edge, there is no subsequent
effect when this edge leaves the optimization subgraph G.

We then introduced the first step, selection of Q(t). There
are two scenarios for Q(t), global topological localization
and pose tracking. When robot has no prior on its pose, Q(t)
is determined by the loop closure algorithms, which is stud-
ied in the robotics community for long time, like Fabmap or
DBoW (Cummins and Newman 2008; Cadena et al. 2012).
Loop closure algorithms yield ranking of nodes based on
the place similarity. Q(t) is then assigned by selecting the
top N nodes for the later geometric localization. Another
way is to utilize the external aids like GPS, the current GPS
reading can be compared to the GPS information in nodes
properties, among which the nearest N nodes are set to Q(t).
In pose tracking, we combine two sources of information,
the geometric information and semantic information. For the
geometry, the odometry is first assigned to the last localized
pose to predict the current pose. The anchor node of the final
relative localization in (1) is defined as the nearest node to the
predicted current pose in Q(t). Then a K -nearest neighbor-
hood of the anchor node is extracted from G to form Q(t).
For the semantics, we also consider the DT in Ni of the nodes
in the geometric neighborhood, like morning and afternoon,
or weather conditions, to further reduce the candidate set
Q(t), by excluding the nodes in the neighborhood but with
unmatched semantic properties.

4.2 Manifold navigation

The map is stated in the 3D space, but it is actually a 2D
manifold which is locally smooth, and a curved ground sur-
face in overall. This is the underlying reason that the robot
pose is stated in 3D, but cannot move to an arbitrary point in
whole 3D space. Following this local property of manifold,
we develop the navigation algorithm in two layers. The top
layer only cares about the topological graph, it searches for a
shortest path on the graph, which is a sequence of nodes the
robot should go through, denoted as H = {hi }, where hi is
the subscript of the i th node in the found path, the consecu-
tive two nodes have an edge connecting them. In this step, the
properties in the nodes and edges are considered as weights
in the shortest path search. In this paper, by considering the
path length in the edge, and the DT of the nodes, the resultant
path is short and more probable for successful localization
of the robot, since the cost encoding the DT drives the path
to go through nodes with similar time in a day and weather
to that of the current session.

Given the sequence H , the bottom layer is responsible
for motion planning. When the robot passes a node in H ,
it is dropped from the H , so the first (starting) node in the

Fig. 4 A simple case of manifold navigation. The black graph indicate
for the ground truth. The gray graph indicate for the TLF graph, while
node and edge in blue are in the planned topological path. The node
pointed by the red arrow is where the anchor of the robot relative local-
ization is. The goal of the robot is to reach the right node in the graph.
When a global metric planner is employed, the error is NH ε, namely
2ε, thus large (left). When we apply the manifold planner with 1-step
ahead (middle and right), the error is ε, as we call the metric planner
each time the anchor changes (Color figure online)

sequence H is always the anchor node for the current rela-
tive localization, i.e. the difference from the starting point of
current path H , and current anchor node for the robot is 0
in metric. Then the bottom layer sets the next gth node, or
the final node in H as the current metric goal hg , which is
computed by concatenating the relative poses pi, j along the
path from node h1 to node hg

ph1,hg = ph1,h2 ph2,h3 . . . phg−1,hg (5)

With the relative localization ph1,t , we can derive the metric
goal in robot coordinates as

pt,hg = p−1
h1,t

ph1,hg (6)

By inserting this metric goal to the motion planner, the robot
can go through the path and get the final goal.

The crucial idea in the navigation algorithm is to re-
compute the metric goal in the bounded g-step ahead from
current anchor submap each time when the submap for local-
ization changes. This is different from the result that we
pre-compute all the nodes in the beginning. Suppose the
length of the whole path is NH and the error in each edge is ε,
then if the final node is computed in the beginning, the error is
NH ε. If we compute the g-step ahead goal when the starting
node is exactly the anchor of the current relative localization,
the error of the metric goal is gε, g ≤ NH , which means the
error can be bounded by setting g. Furthermore, when the
robot approaches the goal, the error of the metric goal < gε,
and ultimately ε when the robot is anchored in nhg−1 . As
the Euclidean metric exists in the tangent plane expanded
at every points on the manifold, motivating our method to
re-compute the metric goal at every anchor node, so that the
metric is well defined, and the error is controlled. A simple
example of the navigation is shown in Fig. 4.

The navigation algorithm proposed above limits the final
goal of the robot, because it can only reach places with nodes.
A small modification is made to deal with this problem. To
go to a specific place, the robot firstly drives to the nearest
node to this place, following the proposed pipeline. Then it
drives to the goal directly, because the error of metric goal
is small enough for navigation. The enhanced algorithm is
listed in Algorithm 1.
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Algorithm 1 Mainifold Navigation
Require: Final goal: D, Topological local-metric map: M , Anchor

node: R
1: ND ← find the nearest node to D in M
2: P ← search a path from R to ND on M
3: for p ∈ P in order do
4: Robot moves to p
5: end for
6: Robot moves to D

5 Memorizingmechanism

The last component in the proposed framework is to build the
map as the representation introduced in Sect. 3. In long term,
special mapping session is not preferred since the workspace
environment is large and change occurs from sessions. In
our framework, the environment is learned across sessions,
each robot in each task session, and also the human involved
session, are regarded as sessions. By sequentially feeding
the sessions into the framework, the basic idea is to sim-
ply memorize the information which is never seen before.
Intrinsically, both mapping and localization are processed
simultaneously in TLF.

5.1 Mapping by localization

In each session, the localizer is try to localize the robot in
M. During a session, the anchor node is firstly localized by
the global topological localizer when the robot has no prior
on its position. Then the pose is tracked locally. The robot
can sometimes lose the localization and rely on the odom-
etry only, which outputs the pose on the submap where the
robot lastly is localized before loss. At this phase, the robot
again calls for the help of global topological localizer to find
a submap for localization recovery. The loss of the local-
ization generally consists of three reasons: First, the robot
avoids the obstacles because of the transient high dynamic,
like pedestrian or other moving objects, causing the serious
perspective change compared to the recorded map informa-
tion. Second, the environment experiences the low dynamics,
like weather condition change, or the structural change like
building repairing. Third, the robot goes through a new place
whose information is never recorded in M, an example is
the first session when M is empty.

Upon the analysis above, we have two findings: First,
the chain graph of the current session Mc consists of two
categories of nodes, localized nodes (u = 1), or nodes not
localized (u = 0), i.e. Mc = Mc,u=1 ∪ Mc,u=0. Second,
change of environment, dynamic of traffic participants, and
significant illumination variations should exist in the period
Mc,u=0. Therefore the memorizing mechanism is designed
to add all these nodesMc,u=0 intoM. In our setting, we go

Fig. 5 A simple case of memorizing mechanism. The gray graph is
M, the nodes in red belong toMc,u=0 while greenMc,u=1. The green
edge are generated by the successful localization. At first, there are two
nodes cannot be localized in the current M (left), then a subsequence
mc,u=0 of continuous nodes not localized (u = 0) and its precedent
and subsequent nodes are inserted intoM (middle). After that, the new
session can be localized completely by the newmap (right) (Color figure
online)

over the nodes in Mc,u=0 sequentially, leading to a session
broken into several segments with each one being a continu-
ous sequence of un-localized nodesmc,u=0 ∈ Mc,u=0. If the
length ofmc,u=0 is higher than a threshold, which means the
loss of localization is not caused by transient dynamics, we
add mc,u=0, and its localized precedent one node and subse-
quent one into the mapM for future utilization as shown in
Fig. 5. This procedure is repeated for all segments. If there
is no localized precedent or subsequent node, meaning that
even global topological localizer cannot find a similar node,
which occurs in the third situation, we insert mc,u=0 intoM
with its existed precedent or subsequent localized node, or
create a new separated graph, e.g. when theM is empty, the
whole session belonging toMc,u=0, is entirely inserted into
M.

In summary, the memorizing mechanism can be under-
stood as automatic switching between mapping when the
robot does not know the environment, and localization when
the robot knows it. With this mechanism, M is expected to
include the periodic change of the environment, which grad-
ually reduces the localization failure caused by this reason.
The algorithm is summarized as Algorithm 2.

Algorithm 2Memorizing mechanism
Require: Localization successful mask of frame j in current session:

s j , Sensor measurement of frame j in current session: f j , Map
before current session: Min

Ensure: Map after current session: Mout
1: S ← null � Segment
2: Mout ← Min
3: for j ∈ all frames in current session do
4: if s j = true then � Localization is successful
5: if S 	= null then
6: Insert S to Mout
7: S ← null
8: end if
9: else � Localization is failed
10: Append f j to S
11: end if
12: end for
13: Mout ← Maintenance(Mout ) � Pruning redundancy of the map

as session 5.2
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5.2 Maintenance

Each node actually indicates for a place with a specific
appearance. Consequently, a physical place with different
appearance, e.g. different illumination or dynamic obstacles,
are regarded as different places in our framework. In long
term, such mechanism causes the size of the map ever grow-
ing to unlimited size, as the out-of-dated information are all
stored in the map M. The maintenance of the map aims at
filtering submaps indicating for places with low but aperi-
odic dynamics. To solve this problem, one way is to utilize
the temporal statics. We record the number of the localizer
being called Ncall , and the number of the successful localiza-
tion Nsuccess for each node ni in a sliding time window, say
a day. The first number indicates the frequency that a node
is traversed during the daily tasks. If a localizer is hardly
called, it means that the corresponding node is not in the reg-
ular daily task path, which may be included in the map by
transient obstacle avoidance. Therefore, pruning such nodes
from the map is reasonable. The ratio Nsuccess

Ncall
indicates that

whether the difference between the submap and the current
observation is large.When the ratio stably decreases, itmeans
that the current environment is different from that in the
submap at the similar geographic place, which can be caused
by low dynamics. Therefore the stored submap is out-of-
dated, which can also be pruned. Since we determine to call
the localizer based on the node properties Ni , like weather
and time of the day, such pruned nodes are mainly caused by
the structural change. In addition, if the ratio decreases occa-
sionally, it may be caused by the transient dynamics, thus
no action is applied. As a result, the memorizing mechanism
helps the robot to improve the localization performance, and
also keep the size of the map stable at the same time.

6 Implementation

The proposed framework can be applied to different sensors,
as long as implementing corresponding localizers, as men-
tioned in Sect. 3. To illustrate effectiveness of the proposed
framework, an implementation for stereo camera is designed,
namely, stereo localizer. It computes the relative transforma-
tion between two pairs of stereo images, one of which is
from live frames and the other is from submaps. Thus each
submap is a pair of stereo images. In this paper, the stereo
localizer is an implementation of feature point based quad-
matchmethod (Geiger et al. 2011). As inGeiger et al. (2011),
if less than 6 matches are found, or RANSAC is not con-
verged, it is assumed that matching is failed. If none of Q(t)
matches with the live images, localization is said to be failed,
and new nodes are generated and cached, until the next suc-
cessful localization. After re-localization, the cached images

Fig. 6 Experimental platform with highlighted 3D laser, stereo vision,
DGPS and laptop

are added to the map, with each pair of images being one
submap.

The topological predictive selector is very important,
for that too much nodes in Q(t) may bring unnecessary
computation, while insufficient nodes may cause localiza-
tion failure. In practice, K is adjusted dynamically, namely,
K = max(2+ L, 7), where L is number of lost frames since
last successful localization. This ensures efficiency in places
with high localization success rate and sufficient search range
during localization failure. To achieve real-time, if there are
more than 5 nodes in Q(t), only 5 nodes of them are chosen
randomly as final Q(t).

In environment with significant changes, localization may
fail for a long time. To increase efficiency, localization is
called every 1 meter. What’s more, after failing more than
7 times, localization is stopped, and global localization is
started. We use visual bag of words method (Gálvez-López
and Tardos 2012) for global localization. The live image is
used to extract a descriptor given a precomputed vocabu-
lary, to find the potential submap with closest descriptor. If
live stereo pairs and the potential submap pass the geometric
check of stereo localizer, it’s regarded that a loop closure is
found, and re-localization is reached.

7 Experiment

In the experiment, a four-wheeled mobile robot is employed
as platform equipped with a ZED stereo camera1 and a VLP-
16 Velodyne LiDAR2 as shown in Fig. 6. All algorithms
including localization and navigation are deployed on a lap-

1 https://www.stereolabs.com.
2 http://www.velodynelidar.com.
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Table 1 Overview of dataset

ID Start time Duration
(mm:ss)

Total time
(hh:mm:ss)

s1 2017/03/03 07:52:31 17:44 00:17:44

s2 2017/03/03 09:20:13 18:45 01:46:27

s3 2017/03/03 10:23:11 18:14 02:48:543

s4 2017/03/03 11:48:03 18:17 04:13:49

s5 2017/03/03 12:59:16 19:12 05:25:57

s6 2017/03/03 14:34:43 19:24 07:01:36

s7 2017/03/03 16:05:54 18:39 08:32:02

s8 2017/03/03 17:38:14 18:01 10:03:44

s9 2017/03/07 07:43:30 17:54 96:08:53

s10 2017/03/07 09:06:04 18:46 97:32:19

s11 2017/03/07 10:19:45 19:04 98:46:18

s12 2017/03/07 12:40:29 18:42 101:06:40

s13 2017/03/07 14:35:16 19:01 103:01:46

s14 2017/03/07 16:28:26 17:59 104:53:54

s15 2017/03/07 17:25:06 18:34 105:51:09

s16 2017/03/07 18:07:21 19:49 106:34:39

s17 2017/03/09 09:06:05 17:50 145:31:24

s18 2017/03/09 10:03:57 17:52 146:29:18

s19 2017/03/09 11:25:40 18:17 147:51:26

s20 2017/03/09 15:06:14 19:13 151:32:56

s21 2017/03/09 16:31:34 19:36 152:58:39

topwith Intel i7-6700CPU2.6GHzand8Gmemory.Thedata
for experiments is collected from challenging outdoor envi-
ronment in Hangzhou, China, hybrid with both unstructured
and structured segments. The time for sunrise and sunset
is around 7:30 and 17:30. The transient dynamics include
moving cars, pedestrians and cyclist sharing the space with
the robot. The low dynamics include lots of varying park-
ing cars and the different time of the day. There are totally
21 sessions in the dataset resulting in more than 23km over
6.5h across 3days. The stereo image pairs, 3D laser scans,
wheel odometry and DGPS information are available in this
dataset. More than half of the DGPS data are null due to the
disturbance from occlusion of trees, also reflecting the diffi-
culty of the dataset. The metadata of the dataset is shown in
Table 1. The ground truth of the dataset is built by global con-
sistent pose graph SLAM with laser scans registration and
the available DGPS measurement as binary and unary edges
since these two sources of sensor data are highly accurate. As
shown in Fig. 7, by overlaying the ground truth on the satel-
lite imagery, one can see that the trajectory are all within the
physical roads, supporting the accuracy of the ground truth.

As laser and DGPS are utilized for ground truth con-
struction, the vision sensor are selected for validation of the
framework. Three types of performances are evaluated to
test the effectiveness and efficiency of the proposed TLF

Fig. 7 Satellite imagery of the place where the dataset is collected. The
highlighted path is passed by the robot in each session with a length of
more than 1km, resulting in 23km over 6.5h across 3days. The color
of the trajectory indicates the localization failure rate with respect to the
position. The number highlights the change during sessions at a specific
position. The circled region corresponds to the circled part in Fig. 1c
(Color figure online)

Table 2 Sessions for localization accuracy evaluation

First session Second session Description

s1 s9 Dawn

s5 s11 Noon

s8 s15 Evening

and memorizing mechanism: the accuracy and robustness,
the complexity when running in long term, as well as the
improvement when deploying the memorizing mechanism.
The navigation algorithm is validated by an autonomous
running in the mapped area by the robot. The comparative
technique selected for baseline is the State-of-art global con-
sistent stereo vision based ORB-SLAM2 (Mur-Artal et al.
2015).

7.1 Accuracy and robustness

To evaluate the localization accuracy, we select three pairs of
sessions in different time of day to compare the localization
accuracy listed in Table 2. Given the relative pose estimation
pi,t , the ground truth relative pose p̄i,t is obtained by picking
the corresponding anchor node and current node and then
computing the relative pose between the two absolute poses.
The error for each pair of ground truth and estimated result
is calculated by
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Table 3 Localization accuracy
for ORB-SLAM and TLF

Lateral Lateral Lateral Heading Heading Heading
RMSE (m) Std. (m) Median (m) RMSE (◦) Std. (◦) Median (◦)

Dawn

ORB-SLAM 3.762 3.252 0.132 4.658 4.026 0.981

TLF 0.461 0.371 0.150 3.898 2.928 1.648

Noon

ORB-SLAM 3.177 2.903 0.156 4.649 4.019 0.495

TLF 0.596 0.490 0.156 4.862 3.844 1.807

Evening

ORB-SLAM 4.823 4.207 0.145 5.013 4.344 0.609

TLF 0.730 0.620 0.192 3.986 2.890 1.808

Bold values indicate better performance

e = pi,t p̄
−1
i,t (7)

where e is the error pose. Following the measures in
Mcmanus et al. (2013), the lateral error is the x-component
and the heading error is the yaw-component in the error pose.
The statistics of the error are shown in Table 3. For the large
difference between mean and median, the main cause is the
insufficient matching, leading to erroneous observation or
localization failure. As one can see, TLF gives much better
robustness against these erroneous observations in both lat-
eral and heading error, since the standard deviation andmean
are much smaller than that of ORB-SLAM, and for median
lateral and heading error, it can be found that the twomethods
are almost the same, at least illustrating that the two methods
can achieve similar performances in localization accuracy.

We further look into the robustness against the erroneous
observations. If ORB-SLAM is regarded as relative localizer,
its global consistent optimizer propagates the error fromerro-
neous observation to other poses, which finally also affects
the relative localization. From Table 2 one can find that TLF
achieves better RMSE and standard error than ORB-SLAM
while the medians of both methods are similar, meaning that
the relative localization of TLF is more stable. This can also
be seen from the circled regions in Figs. 1c and 7, which are
corresponding to the same location. ORB-SLAMmistakenly
observed a sharp movement at the first run, resulting in that
the second run of ORB-SLAM had a large offset (Fig. 1c),
which is catastrophic for navigation under assumption of
global consistency. Although our framework suffered from
wrongmeasurement at the same location,which causing high
failure rate (Fig. 7), the error will not propagate to the later
localization due to local property, which ensures correct nav-
igation.

7.2 Complexity

Besides the vulnerability to error, the cost of global con-
sistency also includes the growing complexity of storage
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Fig. 8 The evolution of computational time for 21 sessions using TLF

and computational time. We feed all the 21 sessions to both
ORB-SLAMandTLF.Themeancomputational time for each
localization is recorded. ForORB-SLAM, the system crashes
in the 3rd session due to the overflow of the 8GB memory,
since all the keyframe poses are included in the global bun-
dle adjustment. For TLF, the result is shown in Fig. 8. One
can see that the evolution of time with respect to the number
of sessions keeps constant, reflecting a bounded complexity.
The main variation of the system is the number of calling
global localization, as it takes much longer time than posi-
tion tracking and is related to the number of nodes in the
TLF. Therefore, the constant evolution of the time also sug-
gests that the number of nodes in the TLF is getting stable,
controlling the global localization indirectly. This compari-
son clearly shows that the complexity of our system is much
lower than the global consistency system.

7.3 Lifelong learning

Thememorizingmechanism is the crucial component enable
long term autonomy of robot through lifelong learning. We
evaluate the effectiveness of this module by comparing the
rate of successful localization with and without the memo-
rizing mechanism. The experiment follows the configuration
above by feeding 21 sessions to the TLF. The success rate is
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Fig. 9 Localization success rate with and without the memorizing
mechanism

Nsuccess
Ncall

. A success of the localization is defined in Sect. 6.
The result is shown in Fig. 9. We can see three results: First,
when thememorizingmechanism is on, the success rate grad-
ually increases, and stably stays around 80%. Session 16 is
special, as it is the first time that the robot run at night, so the
rate falls down. Second, when the memorizing mechanism
is off, the success rate decreases in each day with respect to
the change of time within one day. Because the map only
includes Session 1, so the success rate in later sessions drops
down because the difference between the current session and
the map is getting larger. In addition, in Session 9 and 17,
the rate is high as the map and the current session are in
the same time of a day. Third, the performance of TLF with
memorizing mechanism is dominantly better than that with-
out memorizing mechanism. Actually, the performance of
the latter is the lower bound of that of the former, since more
information are memorized by the robot. With this compari-
son, the value ofmemorizingmechanism is clearly validated,
showing that the robot’s lifelong learning of environment is
possible.

To evaluate the quality of localization with memorizing
mechanism, we demonstrate the distribution of localization
error across multiple sessions in Fig. 10. One can see that the
error of the system keeps the similar levels of localization.
This result indicates that even under the changing environ-
ment (different time of the day), the quality of the localization
does not de-generate, which is contributed by the memoriz-
ing mechanism and the relative localization. It quantitatively
verifies the effectiveness of the proposed framework, illus-
trating its promising performance in long term operation of
mobile robots. Note that the localization error of Session 16
is significantly larger, which is due to the first time of running
at night.
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Fig. 10 Localization accuracy reflected by lateral error (top) and head-
ing error (bottom) with respect to sessions

Still refer to Fig. 7, we further look into the places where
the localization success rate is low. The selected pictures
shown in Fig. 11 are the failure localization at some places.
One can see that the main reason to localization failure is
the serious change of illumination and the low dynamic dis-
turbance, which can also be seen from Fig. 12. The former
significantly changes the shadow, resulting in very different
texture on the ground, which confuses the localizer. The lat-
ter obviously changes a large portion in the images, even
confusing the human. By remembering these changes by the
memorizing mechanism, though the success rate is still not
very high, the localization are improved as shown in Fig. 9.
These results verifies the importance of lifelong learning, and
the possibility of deploying TLF in long term operation. For
the places with low rate of localization failure, the illumina-
tion change is much slighter, and the texture on the building
lead to a more stable feature matching in visual localization.

To show that the memorizing mechanism is feasible
respecting to storage limitation, size of the map after each
session is presented in Fig. 13. Pruning strategy proposed
in Sect. 5 started from the second day. Firstly, a drop in the
number of nodes occurs after the first run in the second day,
because the forgetting mechanism is applied, redundancy
accumulated in the first day is pruned. Secondly, an obvious
increase appears after the last run in the second day, since
the night data appears, which is not included in the first day.
Thirdly, the trend of nodes growing is slow downwith respect
to the first day, and fluctuates around zero at last. These find-
ings validate the feasibility of the memorizing mechanism to
maintain the storage of the map in long term.
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Fig. 11 Some examples of places highlighted in Fig. 7 for good and bad localization. Images of the first 4 rows from top to bottom are captured in
place 1 to 4 with low successful localization rate indicated in Fig. 7. The last two rows are captured in place 5 and 6 with high successful localization
rate

Fig. 12 Cases of feature pointsmatching.Row1 to 3present 3 examples
of failure case, while row 4 is a successful one

7.4 Navigation

The final task of TLF is to provide the navigation to the
mobile robot. The start and goal of the path is set the same
as the 21-session data. We validate the navigation on TLF by
letting the robot run in this 1.1km path autonomously. The
real trajectory of the robot is calculated by aligning the laser

Fig. 13 Numbers of nodes after competition of each session. Pruning
of nodes start from day 2 (session 9)

scan to the laser built map as above. The intermediate goals
are selected every g steps. The robot aims at this series of
goals consecutively. The indicator is designed similar to (7)
as follows

e = pt,goal p̄
−1
t,goal (8)

where pt,goal is the current goal in the robot pose at time
t , and p̄t,goal is the ground truth built by laser data. In this
part, the rooted squared lateral error and heading error are
employed to demonstrate the comparison of their distribu-
tion more clear, which is shown in Fig. 14. As the metric
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Fig. 14 The distribution of the error of goal in robot coordinates at each
timestep. The vertical lines are the mean plus the standard deviation

only exists locally in TLF, the error when g = 10 is much
more centering on 0, thus much lower than g = 50, which
agrees with our theoretic derivation that the error of the nav-
igation is controlled by g. When g = 10, the heading of
the robot provided by the TLF is about 2◦ compared to the
laser results, hence sufficient for the robot to reach the goal
autonomously, thus deployed in our real robot experiment.
Human intervention occurs only three times duringmore than
20min’ autonomous navigation to give theway to pedestrians
and a car. It is because this experiment is intended to validate
sufficiency of our localizationmethod for navigation in sense
of path following, no obstacle avoidance is used. The whole
navigation is attached in the video which is captured by the
left camera of the forward looking stereo camera, validating
the effectiveness of the framework.

7.5 Limitations

From the results above, we thoroughly verify the advantages
of TLF compared to global consistent framework. Then we
talk about the limitations of TLF. First, if the navigation is
the goal, then TLF is a better choice with its performance
and lightweight. However, the cost of the TLF is the loss
of reconstruction. If we want to reconstruct the environment
for visualization or simulation, then globally consistent opti-
mization is the right choice, but TLF provides an architecture
decoupling the localization and navigation from the global
optimization. Second, in TLF, the same place with different
illumination is hard to be detected by loop closure, which
is also the case in global consistent framework. TLF avoids
the risk of incorrect loop closure by constraining the error in
local, but it cannot add more loop closures edges, which may
affect the selection of Q(t) in neighborhood selection. For
practical application, inclusion of low-cost GPS is a poten-
tial way to identify more edges. This topic is studied in the
front-end related works, which is beyond the scope of this
paper.

8 Conclusion

In this paper, we present the TLF for robot’s localization
and navigation in long term. Specifically, the framework
makes use of the relative localization and navigation to avoid
the growing complexity and vulnerability against erroneous
observations in the global consistent framework. Besides, the
memorizingmechanism is proposed to add the lifelong learn-
ing capability to themobile robot, enabling a better long term
autonomy. With TLF, the robot is expected to be more reli-
able in real dynamic environmentwithout losing the accuracy
compared with conventional global consistent framework.
This hypothesis is further verified by the experiments on
a 23km 3-day dataset. Finally, the autonomous navigation
based on the TLF completes the validation of all functions.

In the future, as mentioned by limitations, we will inves-
tigate the front end to further improve the edge identification
in the TLF. The inclusion of the topological loop closure in
the TLF is another possibility since it is much more robust
against the environmental change.
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