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Abstract—Traversable area segmentation is important for safe
navigation of mobile robot in outdoor environment. To address
this problem, we propose a unified framework to register data
across sessions, on which an unsupervised method is presented
for traversable area segmentation intended for unstructured
environments. With data collected on a vehicle equipped with
camera and laser, the proposed method can generate massive
label images for traversable and obstacle area without any
human intervention, which are fed as training samples of a pixel-
wise semantic neural network. In deployment, only a monocular
camera is needed to work with the trained network, without
structured assumption of the road such as lanes and traffic signs.
The proposed method is validated on 4 datasets to demonstrate
performance on traversable area segmentation. Moreover, it is
shown that our method can be generalized to varied appearance
at different location and time with distinct sensors.

I. INTRODUCTION

Traversable area segmentation in unstructured environments
is a vital topic for autonomous vehicle. Precise segmentation
of roads is necessary for safe navigation and correct behavior
controlling. Active sensors like LiDAR suffer from sparsity of
data which makes it hard to avoid small obstacle avoidances.
Furthermore high cost prevents them from being widely used.
Low-cost cameras are gaining more and more popularities in
road understanding. Recent success of deep neural network,
especially CNNs for semantic segmentation, shows potential
of machine vision in this field.

At present most available ADAS(Advanced Driver Assis-
tance Systems) are restricted in on-road environment, mainly
aiming at lane-keeping task. These systems rely on lane extrac-
tion and traffic sign recognition (e.g. [1], [2]), which cannot
be applied in unstructured environment directly. Semantic
segmentation using supervised learning like [3] and [4] shows
notable results but depends heavily on labeled data, which
is precious and labor-intensive, making it hard to leverage
massive raw data. To avoid manual labor, [5] proposed a self-
learning method that assumes an initial guess and grows the
traversable area gradually, but the on-line learning framework
cannot make use of collected data, failing to further improve
the performance through running. In [6] a weak supervised
method was proposed to generate labeled data, but it just
gave ’path proposals’, which limited space for traversable area.
More importantly, it confused the model by providing the
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(a) Proposed framework. (b) Global consistent map.

Fig. 1: After repeating the same route for times, data is
organized in a unified coordinate by building a global map.
Poses of laser can be obtained by registering against the map,
on which poses of other sensors (e.g. camera) are chained.

inconsistent labeling at the same place because of the different
route across sessions.

In this paper we propose a unified framework to fuse
information from different sensors across multiple sessions,
so as to automatically generate labeled images for training of
traversable area segmentation model. We first use LiDAR to
build a globally consistent map, in which data from any sensor
at any time can be assigned with a global pose by localization.
Therefore, the routes in the different sessions can be registered
together to provide consistent labeling. The method does not
make use of road features such as lanes and signs so that
it is pretty suitable for unstructured environment. So massive
data across many sessions, which includes lots of variations,
can be leveraged to train a traversable area segmentation
model without any manual labeling or intervention. The model
employed in our experiments is deep neural network (DeepLab
[7]), which only requires equipment of a laser and a monocular
camera on the vehicle in training phase but only a monocular
camera in testing phase.

Our contribution is presented as following:
• a unified framework is proposed to register data across

many sessions with different spatial, temporal and sen-
sory properties for data mining.

• Based on the framework, an unsupervised sensor fusion
method is presented to generate consistent labeling for
training of the traversable area segmentation model.

• The proposed algorithm is validated extensively on both
internal and external data, illustrating its generalization.

The remainder of the paper is organized as following:
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Related work is discussed in Session II. Methods including
framework and label generation are introduced in Session III,
while experiments to validate our methods are presented in
Session IV. At last we draw conclusion in Session V.

II. RELATED WORK

3D sensors such as laser or LiDAR provides good geom-
etry information but the sparsity of them brings difficulty
to traversable area segmentation. Thus they often work with
cameras. For example, [8] jointly estimated the MAP of a
model which integrated Radar and camera to detect road
boundary, while [9] used laser for curb lines detection followed
by fusion with road paints detected by cameras. [10] uses laser
to find out nearby traversable area, which was later used as
seeds to train a traversable pixel classifier with RGB camera.
Requirement of high cost sensors prevents these solutions from
being practical deployed.

Lots of the purely camera-based traversable area detection
methods rely on road lanes, typically including lane features
extraction [11][12][13] and road model fitting [14][15], op-
tionally followed by time integration [16][17]. These hand-
crafted algorithms are interpretable and work well in structured
environment, but meet problems on roads where no lane
exists or the road structure is broken. To overcome it, [5]
adopted self-learning strategy, which assumed an initial gauss
of traversable patch and gradually expanded the traversable
region on-line. However it cannot make use of collected data
to improve the classifier.

Classical semantic segmentation has ever been used for
detecting traversable area. Those methods can be classified as
random forest(e.g. [18]) and CRF (e.g. [19]). However they
are difficult to achieve high accuracy and far from practical.

Recent trend in computer vision to use deep convolutional
network as a feature extraction tools is also seen in traversable
area segmentation. It is formulated as the pixel-wise semantic
segmentation problem, where one class of the label is road
surface or traversable area. [20] used only convolution layers
followed by fractionally strided convolution layers to achieve
pixel-wise prediction, while [3] employed an encode-decode
architecture with skip connections. However they rely heavily
on manually labeled data (e.g. [4][21]), bringing difficulty to
obtaining large scale datasets, which is necessary to capture
enough variation. [22] used a virtual world to automatically
generate synthetic images with pixel-level annotations, but
there is no desirable solution to adapt it to realistic data. Some
neural network approaches also leverage high definition maps
to improve segmentation performance ([23]), such as landmark
based maps and semantic point cloud maps. But such maps
are expensive thus not widely used in research.

Our work is mostly inspired by [6], which leverages motion
information and additional sensors of a data collection vehicle
to automatically generate labeled data. However, [6] only
generates ‘path proposal’, a small part of actual traversable
area on which the vehicle has driven. This limits the space
for navigation, and confuses the model training as inconsistent
labeling is provided due to the route changing across sessions.

(a) (b) (c)

(d) (e) (f)

Fig. 2: (a)∼(f) present the fusion process. The labeled
traversable area is getting wider when fusing more sessions.

III. METHODS

We propose a unified framework to register data in different
dimensions, e.g. spatial, temporal and sensory. The key is
to represent data in a global coordinate. Our method firstly
building a global map M with data from a specific sensor
L in a single session, then assigning a global pose TW

Lti
to

Lti by performing corresponding localization algorithm. Lti

is data acquired at some time ti from sensor L, where time ti
contains two parts, namely, number of session it lays on and
the running time on that session. With the above definitions
relative transform between two frames of data, Lti and Ltj ,
is denoted by T

Lti

Ltj
= (TW

Lti
)−1TW

Ltj
.

Our framework supports multiple sensors setting. For some
sensor C other than L, it is assumed that relative transform
between L and C is fixed, being denoted by TL

C , which is
obtained by calibration. It is important to know transform
between Cti and Ctj , namely, T

Cti

Ctj
= (TL

C )−1T
Lti

Ltj
TL
C , which

depends on localization results of Lti and Ltj .
In our case, L is laser and C is monocular camera. The

kth point from laser at time ti is denoted by ptik . w
tj
{l,r} is

contact points between wheels and ground plane at time tj
in camera coordinate, with l and r corresponding to left and
right wheel, which is assumed to be obtained by calibration
or simple measurement.

A. Label generation

We define 3 kinds of semantic classes, that is, traversable,
obstacle and unknown. To automatically generate labeled
images, we leverage sensory data collected from a mobile
robot on the same route for several times repeatedly driven in
a varied campus environment manually. With assumption that
area once covered by the vehicle is traversable and laser point
above ground plane is part of obstacle, the label generation
process is as following:
Traversable area The proposed traversable area is based on
‘path proposal’ Ps in [6], which is the future path of vehicle
in a specific session s projected onto the current image Cti .
The path is determined by trajectory of contact points between
wheels and the ground relative to the camera Cti , whose
position on the image plane is:
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Ctiw
ti+j

{l,r} = K ·TCti

Cti+j
·wti+j

{l,r} = K ·(TL
C )−1 ·TLti

Lti+j
·TL

C ·w
ti+j

{l,r}

where T
Lti

Lti+j
is localization result as mentioned above and

TL
C is calibration between laser and camera. K is the intrinsic

matrix of camera. Path proposal Ps is a polygon with vertexes:

Ps = {Ctiwti
l ,

Ctiw
ti+1

l , · · · ,Ctiw
ti+h−1

l ,Ctiw
ti+h

l ,
Ctiwti+h

r ,Ctiwti+h−1
r , · · · ,Ctiwti+1

r ,Ctiwti
r }

where h is the length of trajectory projected on the image
plane. Similar to [6], it is chosen based on the criterion that∥∥∥TCti

Cti+h
· wti+h

l − wti
l

∥∥∥ > 60.
From each session s, one path proposal Ps is generated. In

multiple sessions case, the generated path proposals can be
fused together to become a wider traversable area. In fact, it
is ‘union’ operation on the image plane, namely

⋃
Ps. Fig. 2

is an example of the fusion process, in which 1, 2, 3, 4, 5,
13 sessions are gradually fused, leading to wider traversable
area. The fusion is benefit from the unified framework, in
which path proposals are generated under the same coordinate.
Methods like [6] relaying on locality(e.g. visual odometry)
cannot share information across sessions.
Obstacle area Obstacle area represents region that the vehicle
should not driven on. The traversable area generated above is
in fact not perfect, missing some pixels on the border. Thus
it is important to find out the actual obstacle area, instead of
treating the non-traversable region as obstacle.

In our sensor settings, obstacle can be detected by laser,
which returns 3D points of the surrounding structure. Laser
point ptik at time ti are projected onto image plane of Cti :

Ctiptik = K(TL
C )−1ptik

The pixels above the 2D pixel Ctiptik are marked as obstacle.
To avoid mistakenly seeing points on ground as obstacle,
we also fit a ground plane in current laser scan using [24]
and ignore point 0.25m bellow the plane. Dilatation is also
performed on the obstacle mask to fill holds caused by sparsity
of laser sensor. Opposite to traversable area, only laser scan
of current time is used. For safety, obstacle area is prior to the
traversable one, thus if one pixel is marked as traversable and
obstacle simultaneously, it is regarded as obstacle.
Unknown area As the label generation procedure is auto-
matic, some area may be neither traversable nor obstacle,
which is regarded as unknown area. such region is in fact
place that have not been traveled by the experimental vehicle
and no obstacle point is found on it. Pixel classifier used in
this paper(DeepLab [7]) outputs probabilities of every pixels,
which is useful for further unknown area refinement.

B. Network training

Method proposed in III-A can generate vast of labeled
images, depending on the distance traveled by the data vehicle.
In theory, the labeled data generated by the framework can be
generalized to any pixel-wise semantic segmentation neural

TABLE I: Datasets Summary

Datasets YQ21 YQ-South Shadow
Road

Variational
Road

Camera
Sensor

ZED
Stereo

Camera

ZED
Stereo

Camera

GoPro
Camera

Bumblebee
Stereo

Camera

Input
Resolution 672x376 672x376 640x480 640x480

Laser
Sensor

Velodyne
VLP-16

Velodyne
VLP-16 None None

#Sessions 21 1 1 1

#Images 232627 39567 137 254

network. During deployment, the network can be fed with
images from a monocular camera to predict traversable area.
In this paper DeepLab [7] is chosen as pixel classifier for its
trade off between accuracy and efficiency. Similar to [6], we
build a histogram on turning angle of the vehicle and sample
uniformly among the bins, to avoid unbalance data among
roads with different curvature.

IV. EXPERIMENTS

4 experiments are conducted to validate the framework.

A. Experimental platforms and datasets

3 experimental platforms are involved in experiments. The
vehicle is a four-wheeled mobile robot equipped with a ZED
stereo Camera, a Velodyne VLP-16 laser scanner and a D-
GPS(Fig. 3a). Only images from the left camera of ZED are
used. The laser with 16 beams is leveraged to detect obstacles
as in Session III-A and is used to build a global map along with
D-GPS using [25]. The second platform is bicycle mounted
with a GoPro camera. The third one is a car-like platform
equipped with a Bumblebee Stereo Camera, of which only
the left camera is used.

4 datasets are used for evaluation(summarized in Table I):
• YQ21: recorded by driving the robot in Fig. 3a on a 1km

route(blue line in Fig. 4) for 21 times manually. Captures
appearance variation at different time in three days.

• YQ-South: collected by piloting robot in Fig. 3a on a
longer route(red line in Fig. 4, 4.9km) manually.

• Shadow Road: captured by GoPro Camera mounted on
a bicycle as in Fig. 3b with shadows caused by trees,
whose instability may add blur to the image(Fig. 5a).

• Variational Road: gathered by a Bumblebee Stereo Cam-
era on robot in Fig. 3c with varied conditions such as blur,
barriers, changing illumination and significant texture-
color changes(Fig. 5b).

Most scenes do not have road lanes and traffic signs. In
following the rth session of a specific dataset in the dth day
is denoted by sd,r.

B. Preprocessing and training

Experimental setups including dataset usage and network
assignment are presented in Table II.
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(a) (b) (c)

Fig. 3: Experimental platforms. The YQ21 and YQ-South
datasets are collected on (a), with the Shadow Road and Varia-
tional Road dataset being recorded on (b) and (c) respectively.
(b) is the sketch of experimental setup for experiment 3, in
which a GoPro camera is mounted on a bicycle.

Fig. 4: Blue line represents route of YQ dataset, over 1km.
The red line indicates route of experiment 3, which is much
longer than the former(4.8km).

(a) Shadow Road

(b) Variational Road

Fig. 5: Sample images for dataset in [5].

The first two experiments are conducted on YQ21 datasets.
In experiment 1, 8 sessions are chosen as validation set while
the rest are randomly split as training and testing set with ratio
of 7:3(See Table I for detail). To illustrate necessary of fusion
across sessions, 6 networks are trained with different labels.
Precisely, for the same image, 6 label images are generated
by fusing 1, 2, 3, 4, 5, 13 sessions respectively, because it is
found that trajectories from 5 sessions almost cover most of the
traversable area. Those networks are trained with exactly the
same settings, except for the input labels. Experiment 2 has no
difference with the first one except that the validation set are
selected from sessions after noon(13:00), while training/testing
only capture variation before noon(Table I). Another slight
difference is that only 12 sessions are in training set, 12

sessions are fused at most in this experiment.
Experiment 3 and 4 leverage N6 trained in experiment 1 to

validate generalization ability. YQ-South, Shadow Road and
Variational Road are fed into N6 to make prediction.

We use Deeplab([7]) as pixel-wise segmentation classifier.
In all experiments, images are resized to 321x153 as input of
the neural network. For Shadow Road and Variational Road,
images are first cropped vertically to a proper size then resized
resizing to 321x153. Training phrase last for 40000 iteration
with batch size of 10.

C. Evaluation metrics

Two kinds of ground truths to evaluate network perfor-
mance, fusing 1 and 21 sessions receptively. They are referred
as SGT(Single-session Ground Truth) and MGT(Multi-session
Ground Truth) in the following. In other words, SGT = Pi,
while MGT =

⋃21
i=1 Pi.

Three evaluation metrics are used in experiment 1
and 2, that is, precision PRE = NTP

NTP+NFN
, recall

REC = NTP

NTP+NFP
and Intersection Of Union IOU =

NTP

NFP+NTP+NFN
, where T/F indicates that the prediction

result is true or false, while P/N means that the pixel
belongs to a specific class or not. Take traversable area for
example, TTP /TFP is number of traversable pixels predicted
as traversable/non-traversable, while TTN /TFN is number of
non-traversable pixels predicted non-traversable/traversable.

To compare with [5], two metrics in [5] , FPR and FNR,
are used. In fact, FPR = 1− (PRE of traversable area) while
FNR = 1− (REC of obstacle area).

D. Experiment 1: basic performance

Experiment 1 leverages YQ21 to evaluate basic perfor-
mance. Results can be seen from Fig. 6, where precision,
recall and IOU are used as evaluation metrics, with MGT
being ground truth. Recall of traversable area grows rapidly as
fusing more sessions, with the best path over twice as wide as
the worst case, while recall of unknown and obstacle remains
above 90%. It means that our method actually improves
performance of detecting traversable area without satisfying
capability to distinguish non-traversable region. Similar con-
clusion can be obtain from precision. The overall performance
metric, IOU, get steady growth with the best performance of
over 70% in traversable and unknown area, showing that the
proposed algorithm is practical to be used on non-structure
environment. All metrics for obstacle area remain high in all
cases because fusion mostly changes boundary of traversable
and unknown area, making little effect on obstacle, which
ensures that our method enables safe navigation.

[6] using single session as ground truth, which is the same
as using one session in our algorithm(row 1 in Table III). Thus
compared to [6], our method has slight improvement of over
6%, meaning that more traversable area is found after fusion.

E. Experiment 2: appearance variation

Experiment 2 is intended to illustrate generalization of the
proposed method to varied appearance. Training samples of
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TABLE II: Experimental setups

Experiment Image Source #Training
Images

#Testing
Images

#Validation
Images Sessions for Validation Trained

Networks1
Networks for

Validation

1 YQ21 60232 25813 88440 s1,2, s1,5, s1,8, s2,1,
s2,4, s2,7, s3,2, s3,5

N1(1), N2(2),
N3(3), N4(4),
N5(5), N6(13)

N1, N2, N3,
N4, N5, N6

2 YQ21 54662 23426 101331 s1,6, s1,7, s1,8, s2,5,
s2,6, s2,7, s2,8, s3,4, s3,5

N
′
1(1), N

′
2(2),

N
′
3(3), N

′
4(4),

N
′
5(5), N

′
6(12)

N
′
1, N

′
2, N

′
3,

N
′
4, N

′
5, N

′
6

3 YQ-South - - 39567 s1,1(YQ-South) - N6

4 Shadow Road +
Variational Road - - 391 s1,1(Shadow Road) +

s1,1(Variational Road) - N6

1 In format of Ni(f) where Ni is the network ID and f is the number of fused sessions. For example N6 represent network fused with 13 sessions.

Fig. 6: Precision, recall and IOU of unknown, traversable and
obstacle area in experiment 1. The horizontal red line indicates
value of 0.9.

TABLE III: Comparison of recall: experiment 1 vs 2

#Fused sessions Traversable1 Obstacle1

1 0.8848 / 0.86786 0.9816 / 0.9780
2 0.9187 / 0.90242 0.9814 / 0.9778
3 0.9301 / 0.91629 0.9819 / 0.9797
4 0.9369 / 0.92393 0.9818 / 0.9793
5 0.9398 / 0.92701 0.9829 / 0.9774

13/12 0.9511 / 0.94359 0.9828 / 0.9775
1 Values represented for experiment 1/ experiment 2.

N1 ∼ N6 and N
′

1 ∼ N
′

6 are slightly different, thus domains
of them are not the same, which may reduce the performance
of neural network. Table III is the comparison of networks
trained in experiment 1 and 2, with precision as evaluation
metric and SGT as ground truth. As can be seen, performance
decreases slight without much appearance variation, thus our
temporal fusion is helpful to overcome environment changes.

F. Experiment 3: generalization to locations

Experiment 3 is intended to validate generalization ability to
appearance variation. Images from YQ21 and YQ-South are
collected two routes with nearly 20% overlapping, meaning
that N6 has not witnessed most of the scenes in YQ-South
before. Although the same camera is used, it captures more
appearance variation. It is found that the network works pretty
well on most case, especially on the straight roads(row 1 in
Fig. 7). Obstacle like cars, pedestrian and people on bicycles
can be segmented out(row 2 in Fig. 7). Thus the proposed
method can be generalized to most similar scenes.

There also exist failure cases like difficult corners, shadows
and rare road markers(e.g. zebra crossing), showing weakness
of neural network in domain adaption(row 3 in Fig. 7). This
can be solved by collecting more data with more variation.

Fig. 7: Some prediction results of experiment 3. Row 1:
Straight roads or corners. Row 2: Roads with obstacles like
cars, pedestrian and people on bicycle. Row 3: Some failure
cases, such as puzzling corners, contrasting shadows and zebra
crossing. Row 4: Corner ambiguity. Row 5: The straight way
is found out at first(left), while additional way is observed just
before entering the corner(middle). The original way is ignore
after turning to a new direction(right).

As reported in [6], the classifier may output multiple
predicted traversable area at intersection of roads(row 4 in
Fig. 7), showing generalization of our method. Sometimes the
method may give ambiguous prediction at corners(row 5 in
Fig. IV-F). One way is pointed out before entering the corner
by the network, while another way is found after driving on
the corner. It is because in training data only single traversable
area is given as ground truth, leading to ambiguity at corners.

G. Experiment 4: generalization to sensors and locations

This experiment is intended to validate generalization to
different sensors. Similar to IV-F, N6 is used for inference.
Image sequence of Shadow Road and Variational Road are
used as input, where appearance may varied a lot because
of different sensors. Only traversable and obstacle area are
considered because no unknown area exists in this dataset.

Results can be viewed in Table IV. Precisions of both
datasets are high for both traversable and obstacle area. Recall
and IOU of traversable area is not high because traversable
area masked by the proposed algorithm is still not complete.
Our method shows generalization to different sensors.
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TABLE IV: Performance on outer dataset with different sensor

Metrics Type Traversable Obstacle

PRE Shadow 0.999 0.941
Variational 0.987 0.880

REC Shadow 0.701 0.931
Variational 0.614 0.857

IOU Shadow 0.701 0.879
Variational 0.609 0.767

TABLE V: Comparison with LFTD

Metrics LFTD Ours

Shadow FPR 0.85% 0.10%
FNR 7.87% 5.93%

Variational FPR 2.10% 1.32%
FNR 14.92% 12.03%

Table V presents comparison between LFTD[5] and our
method. The proposed algorithm gets lower FPR and FNR
than LFTD in all appearance cases, demonstrating that our
method works better than the self-learning LFTD.

V. CONCLUSION

In this paper we demonstrated a unified framework to
register data across sessions. Leveraging a global consistent
map, every frame of data from different location, time and
sensor is assigned with a global pose. Within it, we propose
a method to fuse sensor data across sessions to improve per-
formance of traversable area segmentation. Our segmentation
is based on the state of art pixel-wise semantic segmentation
algorithm, namely, deep convolutional neural network, which
requires pixel-wise labels. In our method, the labels for train-
ing samples are generated automatically, without any human
intervention, thus it can create massive data conveniently.
Experimental results validate that our framework largely pro-
motes performance of traversable area detection. What’s more,
our method can generalize to varied appearance of different
time, location and sensors. Up to now, the classifier in our
method may be confused by corners, such as giving multiple
ways or switching between different directions unstably. Thus
our future work is trying to add semantic information into the
neural network as additional input, which may lead to classifier
to the proper direction.
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