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a b s t r a c t

Recent research on automotive driving has developed an efficient end-to-end learning mode that
directly maps visual input to control commands. However, it models distinct driving variations in
a single network, which increases learning complexity and is less adaptive for modular integration.
In this paper, we re-investigate human’s driving style and propose to learn an intermediate driving
intention region to relax the difficulties in end-to-end approach. The intention region follows both road
structure in image and direction towards goal in public route planner, which addresses visual variations
only and figures out where to go without conventional precise localization. Then the learned visual
intention is projected on vehicle local coordinate and fused with reliable obstacle perception to render
a navigation score map that is widely used for motion planning. The core of the proposed system is a
weakly-supervised cGAN-LSTM model trained to learn driving intention from human demonstration.
The adversarial loss learns from limited demonstration data with one local planned route and enables
reasoning of multi-modal behaviors with diverse routes while testing. Comprehensive experiments
are conducted with real-world datasets. Results indicate the proposed paradigm can produce more
consistent motion commands with human demonstration and shows better reliability and robustness
to environment change. Our code is available at https://github.com/HuifangZJU/visual-navigation.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In recent automotive driving research, deep learning tries a
revolutionizing way for vehicle control, which directly maps raw
pixels from camera image to steering commands in an end-
to-end manner [1–3]. End-to-end(end2end) approach seeks to
avoid steps of building an explicit environment model in con-
ventional approach which includes mapping, localization, route
planning and motion planning, etc. Instead, it optimizes driving
variations for perception, planning and reasoning in a single
network to maximize overall control performance [1]. In contrast
to conventional approach, data for training end2end networks
can be collected with relative ease way, i.e., driving around and
recording human demonstration control.

However, end2end approach faces with the problem of learn-
ing very complex mapping in a single network, which needs in-
tensive supervision to handle huge driving variations. Moreover,
it prevents intermediate fusion of visual information with other
range finder sensors that help much to avoid obstacles. This raises
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security concerns, as a small error in vision can induce severe
consequence for driving in high frequency control loop. Despite
these drawbacks, current research often focuses on end2end set-
ting because it allows to look into plenty of challenges. Some
recent methods incorporate additional route planner as learning
input [4–6], such as a routed map or a directional instruction, as
shown in the top half part of Fig. 1. The planned route captures
longer-term motion rules and helps to choose a correct direction
upon reaching a fork. It is beneficial and brings performance
promotion. Yet the network still lacks transparency of how the
planner acts on various driving variations.

In order to address the challenges in end2end approach, we
focus on learning an explainable representation following the
manner of how human drives with route planner. Humans may
rely on the planned route in public softwares to figure a direction
towards goal, then use visual cues like road semantics to reason
where to drive. With the goal-directed area in mind, they perform
flexible vehicle control in relating to different driving scenarios.
The specific control rules may change, e.g., to follow a lane in
urban road nets or to mind unexpected obstacles in campuses.
However, a goal-directed visual region is always formed based
on local road situation, which keeps an overall sense of driving
direction for vehicle control. We denote this region as driving
intention.
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Fig. 1. Comparison of proposed paradigm with end-to-end model for automotive
driving.

We think this longer-term driving intention region is effective
and informative to improve end2end approach, which addresses
only visual variations and solves where to go without conven-
tional precise localization. Therefore, we define the pipeline as
shown in the bottom half part of Fig. 1. An encoder–decoder
structure is adopted to learn the aforementioned driving inten-
tion from image perception and a route planner. For the route
planner, we follow the work in [5] and resort to the planned route
in public navigation softwares with GPS localization. The driving
intention region is then projected onto a local navigation score
map with range finder data fused to increase reliability. Such a
navigation score map encoded with goal-directed information can
be directly used for next motion generation, which is also able to
explicitly consider more specified motion variations.

To avoid manual definition and annotation of driving inten-
tion on image, we devote to learning from human demonstra-
tion. Specifically, human control a vehicle to move and follow
a planned route towards goal. Then for each image perception,
its traversed area in the near ground satisfies current driving
intention and can be projected on image plane as supervision.
The challenge lies in that the demonstration driving only covers
a single direction for each fork and cross, while routes planned
to different directions can be provided during test. The driving
intention is valid as long as it holds rationality in regards to both
visual observation and local route plan. Thus, we consider the
learning task is not pixel-level imitation but structural reasoning,
and develop a weakly-supervised model of cGAN-LSTM network
with the adoption of adversarial loss function. The network learns
to generate a ‘fake’ driving intention region which is hard to be
distinguished from the ‘real’ region maneuvered by human. Then
the generated result is punished as a whole to implicitly learn
road semantics, planning intention as well as their correlation.
Besides, time continuity is considered with a LSTM unit for per-
formance enhancement. The outline of our method is provided in
Fig. 2.

In the experiment, a straightforward motion generation
method is implemented in a DWA (Dynamic Window Approach)
[7] manner for comparison with end2end approach. The proposed
pipeline is validated through real-world datasets including pre-
viously unseen scenarios to demonstrate generalization ability.
Experiments show our method achieves better performance than
state-of-the-art end2end model on both reliability and robust-
ness. To summarize, our main contributions are twofold:

• An innovate learning-based automotive driving system is
developed. The system learns from images and low-cost
GPS-level route planner to achieve goal-directed driving in-
tention without precise localization. It eases problem com-
plexity for end2end approach and can be efficiently inte-
grated for modular motion planning.

• A weakly supervised and adversarial learning method is
developed through learning from demonstration, the core
of which is a cGAN-LSTM network trained with limited
single-modal demonstration data. The model is enhanced
with time continuity and can be generalized to achieve
multi-modal behaviors when facing new scenarios.

The remainder of the paper is organized as follows: Section 2
reviews the related works on learning-based approaches for au-
tomotive driving. Section 3 illustrates details of the proposed
system architecture. Section 4 presents the experimental results,
and Section 5 draws a conclusion.

2. Related work

Conventional pipeline of vehicle control includes mapping,
localization, path planning and motion planning. The result of
localization, i.e. a reference path or a goal in vehicle local coor-
dinate, and the result of path planning, i.e. a grid map with(out)
semantics, are fed into motion planning to generate final control
command. The system is thus sensitive to environment change
and calls for a lot of work to improve performance on sepa-
rate modules. Specifically for the visual perception, modular ap-
proaches can need substantial pixel-level or box-level annotated
data for CNN based recognition tasks. And there are multiple
sub-components for recognizing driving-relevant objects, such as
vehicles, pedestrians and cyclists detection [8–13].

In this section, we give a brief review of two learning-based
systems aimed at improving the conventional automotive driving,
each following a different system design: end2end approaches
and direct perception approaches.

End-to-end approaches. Recently, end2end method learned from
human demonstration becomes popular in automotive driving.
The intrinsic merit is that the performance of intermediate stages
in conventional system architecture may not be aligned with
the ultimate goal, namely, the control of the vehicle. With this
idea, [1] firstly proved powerful ability of CNN to steer a vehicle
directly from vision input. Codevilla, et al. [2] then proposed to
learn the driving model to compute motion command via con-
ditional imitation learning, which incorporates high-level com-
mand input to consider the repeatability of imitation learning.
The work in [4] collected control commands from existing local
planner (Dynamic Window Approach [7]) and proposed a two-
stage approach to relax prior knowledge for localization. This
relies on the path-planning result, as the form of navigation
is to learn expected motion commands using a residual neural
network. The work in [5] adopted 360-degree surround-view
cameras along with planned routes information from commercial
maps to learn an end2end driving model. Their work has utilized
GPS signals as well as public map to generate steering angles and
speeds based on a RNN. As reported in their evaluation, it has
unavoidably incorporates human intervention. The work in [14]
proposed to estimate a variational network to get a full proba-
bility distribution over the possible control commands; however,
when combined with specific navigation indicators, they still
solve an accurate form of certain control command. Compared
with this category, our work relies on similar input without
relying on precise geometric transformations while achieves in-
termediate representation of navigation score map in robot local
coordinate. We consider the problem space of end2end control
learning is more complicated than ours, as the motion states of
vehicle are coupled with the visual understanding.

Direct perception approaches. Another idea still achieves an inter-
mediate representation of environment while goes a step further
towards vehicle direct usage. The concept was first proposed
in [15] which involves multiple distance regression tasks to sur-
rounding cars and road markings. Al-Qizwini et al. [16] then
improved the work in [15] by analyzing different CNNs for the
mapping from image to indicators. In [17], a model utilizing
public Google Street View and the OpenStreetMap is developed to
infer road layout and vehicle relative pose given imagery from on-
board cameras. Later, the work in [6] generalized the work in [15]
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Fig. 2. Outline of our approach. A cGAN-LSTM model is utilized to learn driving intention from human demonstration with local route plan. While testing, the
model generates corresponding driving intentions following both planning intentions and road structures. The driving intention is then integrated with concurrently
collected laser data and rendered into a navigation score map. Based on this, vehicle motion is generated by scoring candidate driving curves. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

and proposed intermediate affordances to facilitate driving, in-
cluding both vehicle relative pose to the road and recognition of
specific traffic signs. Apart from these newly proposed concepts,
the works of traversable region recognition [18–20] also belong to
this category. The weakly-supervised drivable area segmentation
method proposed in [18] assumes the traversal areas are exactly
where vehicle has visited earlier and can be projected to images
as annotation. Then Tang et al. [19] applies mapping techniques
to extend the trajectory projection from one to many, which
broadens the traversable area. Wang et al. [20] proposed an on-
line learning mechanism to deal with the appearance change of
traversable region without referring to the massive data. These
works have eventually yielded an intermediate representation for
vehicle control, while may still need further reasoning for motion
control. Furthermore, some of the learned perception results still
rely on accurate pose estimation from conventional approaches.

3. Methods

This section introduces the proposed driving paradigm in de-
tail. The system architecture is shown in Fig. 2, blue box shows
the procedure of learning from human demonstration and green
boxes show the test application. The core of the system is a cGAN-
LSTM network, which takes front-view image and local route plan
as input. The model learns to generate a goal-directed driving
intention region on the road area to indicate supposed future
control. When testing in strange scenarios with different local
route plans, the model is able to generate corresponding driving
intentions towards different directions. For further motion gen-
eration, the driving intention is projected on vehicle near ground
and integrated with concurrent laser perception to render a nav-
igation score map. We implemented a straightforward method to
generate control command by scoring candidate driving curves
to test our framework. The specific illustration of each step is
provided in the following parts.

3.1. Weakly-supervised driving intention learning

3.1.1. Network design
The intention learning is framed as a structure reasoning pro-

cess to follow both road situation in image and planning intention
in local route plan. Since human demonstration only covers a
single direction for each fork and cross while route plans to
different goals can be provided during test, the learning is not
treated as a pixel-level imitation and regression. Instead, the re-
cent GAN [21] model is adopted with adversarial loss to evaluate
the network output as a whole. GAN consists of a generator and

a discriminator. The fake output from generator is trained to be
similar with the real data so as to cheat the discriminator. Thus,
the generator eventually learns to produce an overall reasonable
result following the distribution in provided dataset. We imple-
mented a network structure of cGAN-LSTM specifically for driving
intention generation, the model structure is provided in Fig. 3.

The network structure has referred to the work in [22], which
follows the design of conditional GAN [23] and utilizes a UNet
[24] as generator. As implied, UNet is an encoder–decoder struc-
ture with skip connections to preserve lower-stage features. We
use less layers in our case since the generation task does not need
to recover complete textures of the image. Our model treats both
the image and the route plan as prior conditions. The two inputs
together with the generated driving intention are fed into the
discriminator for evaluation. Since the intentions are continuous
in both time and space domain during driving, a LSTM (Long
Short-term Memory) unit is inserted after the last encoder layer
to capture series relation, which at the same time guarantees
minimum parameter increase.

Let us consider k−1 steps of the former visual perception, the
sequential input images are denoted as I[t−k+1,t] and the corre-
sponding local route plans are denoted as R[t−k+1,t], for each time
t . A visual driving intention towards goal is expected to learn,
denoted as Vt , at current image. Thus, the problem is formulated
as G : {I[t−k+1,t], R[t−k+1,t]} → Vt . Since previous approaches
have found it beneficial to mix the GAN objective with a more
traditional loss, such as L1 distance [22], the objective function is
the sum of two weighted loss for the considered k steps:

L = argmin
G

max
D

t−k+1∑
t

LcGAN (G,D) + λLL1(G) (1)

where λ is the weight parameter.
The first item is the standard cGAN objective function:

LcGAN (G,D) =EIt ,Rt ,Vt [logD(It , Rt , Vt )]+
EIt ,Rt [log(1 − D(It , Rt ,G(It , Rt )))]

(2)

and the second item is a patch-wise L1 distance from generated
intention to the provided real driving intention:

LL1(G) = EIt ,Rt ,Vt [∥Vt − G(It , Rt )∥1] (3)

The cGAN-LSTM model ensures generated intention to con-
sider both current road structure in image perception and differ-
ent intentions in local planned routes. It has implicitly learned
their inherent correlation by adversarial training and can be
generalized to allow for different driving intentions when con-
fronting with new scenarios.
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Fig. 3. Model architecture of cGAN-LSTM. Front-view images combined with local route plans are fed into a UNet structure to generate goal-directed driving intentions.
The middle of the UNet is inserted with a LSTM-unit to incorporate time continuity. The predictions are then concatenated with input images to go through the
discriminator.

3.1.2. Data preparation
To achieve the learning of driving intention, the data of image

perception, local route plan, and annotation of driving intention
region needs to be provided. More importantly, their correlation
needs to be specifically established. This part illustrates how
the data are made ready for training network and performing
comprehensive experimental evaluations.

Local route plan We devote to follow human’s manner to get
local route plan, which uses public navigation softwares with GPS
signal. For the correlation, one possibility is to enable the commu-
nication between vehicle to such an APP during demonstration.
Nevertheless, the interface to real-time synchronized view of
local route plan is not make public for research usage. Besides,
the model performances under different GPS localization errors
need to be carefully considered and experimentally evaluated.
This may lead to substantial workload for on-line data collection
and rendering. Therefore, we developed an off-line route render-
ing method, which makes use of the spatial alignment between
public map and vehicle demonstrated trajectory. The procedure
is shown in Fig. 4.

Fig. 4. Procedure to get off-line local route plans. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Given public map data from Baidu Map,1 the global route R
is annotated with a similar manner to that of the navigation
softwares, as shown with the red lines in Fig. 4(a). Then, R is
discretized to route points Rd, as shown in Fig. 4(b). After human
demonstration driving along the global route, the vehicle poses
can be obtained as shown with blue dots in Fig. 4(c), denoted
as Tr . In the experiment, the vehicle poses are obtained with the
conventional localization approach demonstrated in our previous
work [19].

The spatial alignment from vehicle poses to the routed public
map is now the task of aligning two sets of planar points Rd and
Tr . Here, the DTW (dynamic time warping) [25] algorithm is used,
which is commonly adopted in the time domain to warping time
series data:

DTW (Tr , Rd) = min
1
K

√ K∑
k=1

wk (4)

where K is the warping length, and wk = (i, j)k is the warping
weight between Tr to Rd.

1 https://map.baidu.com/.

The step-by-step optimization objective is:

γ (i, j) = w(Tr (i), Rd(j)) + min{γ (i − 1, j − 1), γ (i − 1, j), γ (i, j − 1)}

(5)

where γ is the accumulated series distance. Specifically, a ge-
ometric warping criterion is adopted in our scenario, and w is
defined as the euclidean distance from projected vehicle pose to
the center route point:

w(Tr (i), Rd(j)) = ∥(Tr (i)), Rd(j)∥2 (6)

The aligned result is shown in Fig. 4(d). By assigning the
heading direction of each road section, different local route plans
can be cropped under various experiment settings.

Driving intention annotation. The driving intention region is
annotated by projecting vehicle traversed area on current image
under specified route plan, as shown in Fig. 5.

Fig. 5. Driving intention annotation. Left: vehicle projected poses; Right:
annotated driving intention region.

For each image, vehicle future poses in the near ground are
first projected on the image plane. Then the poses are dilated
with vehicle width to indicate current driving intention. Thus
the annotation certainly satisfies both planning intention in the
route plan and road semantics in image. This idea is similar to
the drivable region annotation work in [18]. However, they do
not differentiate region directions and further do not learn their
relations with the route plans. The other regions on the image are
then labeled as obstacle and unknown [18] utilizing the projection
of concurrently collected laser perception.

3.1.3. Training
We consider four time steps to train the cGAN-LSTM network:

0.9 s in the past, 0.6 s in the past, 0.3 s in the past, and the current
frame, similar to the experiment setting in [5]. As the straight
road sections are much longer than the turning sections, per-
ceptions for straight driving class are down-sampled to around
one sixth in order to keep a same quantity with that of turning
perceptions.

For parameter optimization, we first train a basic-model of
cGAN without LSTM unit, following the common procedure of
one gradient descent on D and then one step on G. The basic
model network is trained with stochastic gradient descent(SGD)
at a learning rate of 0.0002 and a batch size of 12. The momentum
parameters are β1 = 0.5 and β2 = 0.999. The basic model is

https://map.baidu.com/
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trained with 200 epochs. Then the cGAN-LSTM model is fine-
tuned based on the pre-trained parameters of the basic model.
During the fine-tuning, the encoder part of UNet is fixed to
keep a stability of the network. The cGAN-LSTM model is trained
additionally around 20 epochs. At inference time, the generator
net runs in exactly the same manner as during the training phase.

3.2. Motion generation with driving intention

The driving intention preserves a learned region which is
highly adaptive to fuse with other sensors and motion variations
to ensure vehicle safety. Considering vehicle usually runs on
smooth roads, an assumption is made that the road area in the
near front of vehicle can be modeled with a flat plane. Thus,
driving intention area can be projected on robot local coordi-
nate with camera calibration parameters and then integrated
with concurrent laser perception to render a navigation score
map. Based on the local navigation score map, a straightforward
motion generation method is implemented by scoring candidate
driving curves. The procedure is shown in Fig. 6.

Fig. 6. Motion generation with learned driving intention. (a) Projection of visual
driving intention with laser perception integrated; (b) Navigation score map
modeled with Gaussian kernel; (c) Candidate driving curves with their scores
labeled; (d) Final control command with the highest score.

In Fig. 6(a), the white grids (0.5 m × 0.5 m) indicate pro-
jected driving intention in vehicle local ground. The black grids
indicate the obstacle perception from concurrent laser data. To
consider the neighboring influence, driving intention grids are
assigned with positive Gaussian kernels and obstacle grids are
assigned with negative Gaussian kernels, which together form the
navigation score map used for motion generation, as shown in
Fig. 6(b).

In order to keep the task tractable, motion generate is con-
ducted in an DWA manner, i.e., to produce candidate driving
commands and estimate the best one. Following the work in [1,
14], the steering command is presented as driving curvature,
denoted as 1

r , where r is the turning radius in meters. Since
vehicle constantly adjusts its control command based on visual
perception, it is reasonable to assume that it keeps a uniform
motion during a short time clip. Resultantly, the future trajectory
can be modeled with a curve in the local navigation score map.

Specifically, the 90◦ space ahead of vehicle is divided into
numbers of directional sections in relating to different require-
ments of control precision. Then, a same number of candidate
driving curves are generated whose curvatures range evenly
within [−0.2, 0.2], as shown in Fig. 6(c). It is an example of seven
candidate curves. Each curve can be estimated with a score based
on the navigation score map. Then the final command is the curve
with the highest score, indicating the direction towards goal, as
implied in Fig. 6(d). The motion generation is straightforward
while efficient to show its usage and be compared with end2end
approach. The incorporation of more specified motion variations
is the future work.

4. Experiments

This section reports the experiment results of the proposed
approach, including experiment set up, performance of driving
intention generation, and performance of motion generation.

4.1. Data sets

Experiment data are collected with a real vehicle running in
our campus, which have been extensively adopted in conven-
tional automotive driving research [26–28]. The data collection
routes are shown in the left of Fig. 7. Blue lines show the training
route with a length of 1.2 km. Red lines show the test route
with a total length of 4.8 km. The overlap sections of the two
routes are basically collected in a bi-directional manner. The
vehicle used for data collection is shown in the right side of
Fig. 7, which is a four-wheeled mobile vehicle equipped with a
ZED stereo Camera, a Velodyne VLP-16 laser scanner and a D-
GPS. Only images from the left camera of ZED are used with
a resolution of 314 × 648 pixels. The training data involve 21
times of demonstration driving at different times over three days,
covering varying weather/illumination conditions. Each demon-
stration driving contains ∼7000 frames of observations. And the
test data contain ∼25000 frames of observations.

Fig. 7. Data collection routes and experiment vehicle. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

4.2. Intention generation result

The first part presents the result of driving intention genera-
tion.

Evaluation Metrics. There are three criteria used for eval-
uation on intention generation: IoU, ∆yaw, and E(l2). IoU is
the intersection over union between predicted driving intention
and human demonstration. It is a widely used metric for visual
area prediction tasks, which shows both the correlation and the
relative scale to ground truth. ∆yaw is the angle difference of
driving directions between prediction and human demonstration
in image plane. Since the presentation of driving intention region
is a novel contribution in our work, this metric is first proposed
in this work to evaluate the direction difference. The calculation
illustration is provided in Fig. 8.

Fig. 8. Illustration of ∆yaw. The dark gray grids show the future control of
human demonstration and the light gray grids imply model prediction. Red dots
and green dots show the center points of human driving and model prediction
respectively, which have been both down-sampled for better visualization. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Table 1
Performance of driving intention generation.
Model IoU% ∆yaw E(l2)

cgan_basic 62.01 13.63 0.557
cgan_lstm 78.47 8.46 0.171

E(l2)[29] is the averaged l2 distance from prediction to ground
truth and has been commonly used for long-narrow shape pre-
diction tasks [29–31]. Specifically in our case, the pixel-level
center points of driving intention and human demonstration are
projected in the ground plane. Then for each pair of points that
have the same row in the image plane, their distance on the
ground plane is calculated and averaged to estimate E(l2).

4.2.1. Network performance
We test the visual result with two models of cgan_basic and

cgan_lstm. The cgan_basic model does not include a LSTM unit.
The result is presented in Table 1.

From the table we can see, cgan_lstm outperforms cgan_basic
for all the three criteria. Thus, the LSTM unit has shown its
effectiveness to shape driving intentions with time continuity
considered. The model of cgan_lstm has achieved an IoU of 78.01%
which means the prediction has covered at least 78.01% area
of human demonstration and the prediction scale is between
0.78× to 1.3× that of demonstration area. ∆yaw is around 9
degrees, which implies a similar heading direction to the ground
truth (Fig. 8 shows an example of ∆yaw = 11◦). The overall
performance of E(l2) is 0.171 m, and the image-level prediction
accuracies under different distance thresholds are shown in Fig. 9.

Fig. 9 shows the accuracies of cgan_basic and cgan_lstm re-
spectively. The model of cgan_lstm performs much better than
cgan_basic and gets over 90% accuracy with a threshold of 0.3m.
The work in [29] has focused on a threshold of 1m accuracy for

Fig. 9. Intention generation accuracies under different thresholds.

trajectory prediction and the work in [30] get an overall E(l2) of
0.77m. Therefore, our result is a relatively favorable value.

Fig. 10 has provided some visual results of driving inten-
tion predictions. In general, turning classes have more shape
variations to that of human demonstration while still keep a
similar direction to human control. Besides, an obstacle avoidance
behavior is observed in the result, as shown with the yellow
boxes. Some generated intentions have slightly adjusted there
shapes to avoid dynamic obstacles without explicitly learning it.
For further quantitative study, we have manually annotated 72
dynamic objects in the dataset and calculated the percentage of
driving intention falling inside the annotated bounding boxes as
evaluation criterion, which is denoted as IoD (Intersection over
Dynamic objects). The result is shown in Fig. 11.

Fig. 11(a) is the image-level accuracies. The correct predic-
tion is evaluated by whether its IoD is less than a pre-defined
threshold. It can be seen that around 80% images can correctly
avoid current obstacles with a threshold of 0.03 and more than
90% images have an IOD below 0.15. Fig. 11(a) presents the
percentage of correctly avoided obstacles in object-level. Among
the 72 objects, around 70% are successfully avoided with a mean
IOD below 0.03 and around 90% are avoided with a threshold of
0.09. Nevertheless, there are still failed cases with more than 20%
coverage on dynamic obstacles. This is also one of the motiva-
tions behind this work which has separated the vision variation
with that of motion control. It is efficient to deploy recognition
tasks on informative visual input while may be hard to get 100%
accuracy. Thus, the motion planning module can be further fused
with other concrete distance perceptions to ensure vehicle safety.
More results on motion planning are presented in Section 4.3.

Fig. 11. Performance on dynamic object avoidance.

4.2.2. Robustness to localization errors
The method assumes to utilize public navigation softwares

with GPS signal. As the GPS signal commonly provides rough
localization results, this section discusses the model performance
under different localization errors. In order to achieve it, random

Fig. 10. Visual results from cGAN-LSTM. Green, red, and blue colors represent prediction, human demonstration and their intersection respectively. The local route
plans are shown in the top right corner of the image. The intention boundaries are fitted with splines in these figures. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Robustness to localization errors. From top to bottom: minor (0 m∼1 m), moderate (1 m∼2.5 m) and hard (2.5 m∼5 m) errors. Green, red and blue colors
represent the prediction, human demonstration and their intersection respectively. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Robustness to localization errors.
Model minor(0 m∼1 m) moderate(1 m∼2.5 m) hard(2.5 m∼5 m)

IoU E(l2) ∆y IoU E(l2) ∆y IoU E(l2) ∆y

basic 61.94 0.559 13.64 61.96 0.560 13.62 61.93 0.557 13.61
lstm 76.86 0.174 9.51 76.52 0.180 9.88 76.37 0.179 10.08

Abbreviations: basic(cgan_basic), lstm(cgan_lstm), ∆y(∆yaw).

offsets on both horizontal and vertical direction are added when
rendering local route plans in Section 3.1.2. The random offsets
go into three levels: easy, moderate, and hard, with each level
corresponds to a localization error of 0 m∼1 m, 1 m∼2.5 m, and
2.5 m∼5 m respectively. The result is presented in Table 2

As can be seen in the table, the two models have basically
achieved stable performances given different levels of route off-
sets. To compare with the result from center-view routes in
Table 1, only ∆yaw of cgan_lstm has a slight increase with the
growing of localization errors, while the other two criteria have
remained in similar values to the previous results. Thus the model
has shown robustness to potential localization errors. Some visual
result from cgan_lstm with different level of route offsets are
shown in Fig. 12.

4.2.3. Discussion: multi-modal behaviors
Annotation from human demonstration only validates a single

driving intention with pre-defined local route plan, while multi-
modal behaviors are presented when approaching intersections
and open areas. For a further qualitative evaluation, three fake
route plans are made to test the model, which are intuitively
viewed as {go-straight, turn-right, turn-left}. These route plans
are used to generate driving intentions with each of the test
images. Fig. 13 has provided some direct results from network
output.

Fig. 13. Multi-modal driving behaviors with different road types. From top to
bottom: one-way straight road, T-junction road, and cross area. Green color
shows the original output from the network. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

The three rows show the road types of straight, T-junction
and intersection respectively. The local route plans are shown in
the top right conner on the first row. For the first two classes,
there are route plans that may not be allowed on current road
situations. In this case, the model can still generate reasonable
intentions following specific road structures. While for the last
class, where all routes can be performed, the model generates
different driving intentions accordingly. Here, we did not use
a spline to fit the intention boundary, which better shows the
directional differences on network outputs for different routes.

Fig. 14 specifically presents a group of images when facing
a moving car with different route plans. The result is visually
compared with the model of pix2pix [22] which does not include
local routes for intention generation. When there are dynamic
obstacles appeared in front of the vehicle, the proposed model
can generate intention area to fit both planning intention and the
dynamic obstacle.

4.3. Motion generation result

In order to show the effectiveness of proposed driving inten-
tion on motion generation, a straightforward motion planning is
performed by scoring candidate driving curves. For comparison to
end2end approach, we implement the network structure in [5],
which generates direct control commands also with public route
plans. Their driving commands are presented as velocity and
angular speed. We calculate driving curvature as ct =

wt
ct
, for

each time t referring to the work in [14]. As for the ‘ground
truth’ from human demonstration, the actual trajectory curvature
is calculated for comparison.

Evaluation Metrics. To quantitatively evaluate the system
performance, the motion prediction accuracies are calculated for
different control precisions. The definition of true positive is
illustrated in Fig. 15.

The black dials indicate different motion resolutions, for which
the proposed method generates a same number of candidate
motion commands, as shown with the gray curves. Green grid
indicates final model prediction with highest score in naviga-
tion score map, and red grid indicates ground truth from hu-
man demonstration. Then the prediction accuracy is measured
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Fig. 14. Multi-modal driving behaviors when facing a moving car. Green, red and blue show the results from cGAN-LSTM, pix2pix, and their intersection respectively.
The intention boundaries are fitted with splines in these figures. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 15. Evaluation criterion for motion generation. Gray curves show the
candidate driving commands in relation to the control precision. Green curve
indicates the command with a highest score in the navigation score map. And
red color shows the ground truth maneuvered by human demonstration. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

with the grid distance ∆g from model prediction to human
demonstration:

accuracy =

∑T
t=0 [|predt − humant | ≤ ∆g]

T
where T is the total steps of test data. [·] equals to 1 if the
formulation inside is true and otherwise equals to 0. For compre-
hensive evaluation, we provide quantitative results under three
settings of ∆g = {0, 1, 2} with control resolutions range from 3
to 23. The resolution of 3 means the prediction only distinguishes
the directions from right, left to straight. And a resolution of 23
represents a control precision of less than 4◦.

4.3.1. Model performance
The two models of cgan_basic and cgan_lstm are both evalu-

ated to compare with the end2end [5] method. The results with
different motion resolutions are shown in Fig. 16.

The three figures present accuracy on complete test route, long
straight test route, and turning route respectively. For an overall
accuracy measurement, cgan_lstm achieves better performance
than end2end method under most settings, and shows better
robustness to different control resolutions. When the control res-
olution goes up, cgan_lstm also generates more candidate curves
for a careful search to better fit for the driving intention. This
shows the visual driving intention is adaptive to different mo-
tion requirements regardless of specific control precision in the
demonstration driving, as the intention region has incorporated
demonstration control to local road reference instead of numer-
ical imitation. Some visual results from the proposed system is
shown in Fig. 17. The last case in the first row specifically shows a
control example for dynamic object avoidance, which has planned
a curve different to the heading direction of intention region to
avoid the detected obstacle. In contrast, end2end approach learns
a numerical mapping from visual input to motion output regard-
less of different control resolutions, thus it gradually decreases
when the evaluation gets more strict.

For the performance on separate straight class and turning
classes, advantage of the proposed model is more significant for
the turning road sections which are more challenging due to the
complex road situations. A more intuitive comparison of error
rates along test route is provided in Fig. 18. As the figure shows,
end2end method has more errors when vehicle is approaching
turning road sections. We consider the reason is the numerical
differences of demonstration control when facing a same turn-
ing class. A big turn requires a small driving curvature and a
small turn may require a big driving curvature. Besides, human
may change the driving commands during turning for obstacle
avoidance. This also increases the intra-class variation for similar
perceptions in the turning classes. Thus, it may be complex in

Fig. 16. Motion prediction performances. Green, blue, and red represent the performances of cgan_lstm, cgan_basic and end2end respectively. For each individual
model result, color from light to dark represent a grid distance threshold of 0,1,2 for ∆g . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 17. Motion generation result compared with human demonstration. For each case, top figure shows the visual result and bottom figure shows the generated
motion in navigation score map. Green and red colors represent the model prediction and human demonstration respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Error rate densities along the test route. The results come from a control
resolution of 7-grids. The blue color indicates a better result. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

end2end training to consider both variations in perception and
planning. In contrast, for the long straight road sections, most
commands stay near-linear and unchanged for a long time, which
can be efficiently learned by both models.

Besides the evaluation on discrete control commands, two
metrics are provided to show the smoothness of generated mo-
tion commands. The first one is the standard deviation of com-
mand difference between model prediction with human demon-
stration. We calculate it on the complete test route. The proposed
method gets 0.0244 and the end2end method gets 0.0311, which
shows the proposed method has less fluctuations around the
ground truth trajectory. The second one is the count of accel-
eration time slices along the test route. During vehicle control,
less zero crossings of accelerating values indicate less fluctuated
velocity directions, i.e. a better smoothness. Since the data is
collected with a fixed rate of 10 Hz, the acceleration values can
be efficiently estimated between consecutive frames. Then a time
slice can be counted as the acceleration holding steps between
two zero crossings. The results of different models are shown in
Fig. 19.

Fig. 19(a) is the result of the proposed method. It decom-
poses test route to 2683 time slices, among which the single-step
changes take a share of 42%. Fig. 19(b) is the result of end-to-
end method, which decomposes the test route to 11297 time
slices. There are 60% single-step changes and most time slices are
less that three steps. Therefore, the proposed method can provide
more smoothed driving motion than the end-to-end manner.

Fig. 19. Evaluation of acceleration holding steps for different models.

4.3.2. Discussion: robustness to time delay
For the design of end2end approach, motion generation is cor-

related with environment understanding. This makes the system
has a strong reliance on real-time vision prediction. However,
the vision processing alone is prone to be disturbed and the GPS
signal for local route plan can be lost due to occlusions. Thus,
it can be a critical ability to generate valid motion command
when visual result is delayed. In this section, we investigate the
motion generation ability when there are different levels of time
delays for visual prediction. The results are shown in Figs. 20 and
21 for end2end method and the proposed method respectively.
The two figures show sequential prediction curvatures along a
section of test route. The discrete dots represent actual data
points, which are fitted with smooth lines to indicate variation
trends. In Fig. 20, since end2end approach outputs direct driv-
ing commands without intermediate knowledge retainment, it
needs to keep the former motion command during time delay
without human intervention. This is reflected on the extended
dashed lines for generated motion. Nevertheless, for the proposed
method in Fig. 21, there are new commands generated during
time delay. And the result has shown a similar level of command
dispersion with that of no time delay. Since the learned intention
has a certain area on the ground plane, visual result in one frame
can be efficiently integrated with following obstacle perceptions
and be used to render a new navigation score map for motion
generation in multiple steps.

Compared with the real-time visual prediction, most predic-
tion errors for cgan_lstm appear as big curvatures. It is caused by
planning circle actions for vehicle when it has passed the retained
intention area. In this case, the area around vehicle position has
the biggest score and the model tends to give a largest curvature



10 H. Ma, Y. Wang, R. Xiong et al. / Robotics and Autonomous Systems 127 (2020) 103477

Fig. 20. Comparison of end2end method with human demonstration when visual prediction is delayed. From top to bottom: no time delay, 1 s delay, and 2 s delay.
Blue color indicates the model prediction and red color denotes human demonstration. The dots denote actual data points, which are fitted to a smooth line to show
the prediction tendency. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Comparison of proposed method with human demonstration when visual prediction is delayed. From top to bottom: no time delay, 1 s delay, and 2 s delay.
Green color indicates the model prediction and red color denotes human demonstration. The dots denote actual data points, which are fitted to a smooth line to
show the prediction tendency. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 22. Robustness to time delay. The time difference between consecutive frames is 0.3s. Green, blue, and red colors indicate motion generation results of cGAN-LSTM,
end2end, and human demonstration respectively. The red points in the navigation score map indicates vehicle previous poses. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

to stay nearby. Therefore, the longest time that the proposed
method can handle depends on the valid area from driving inten-
tion projection as well as the driving speed of vehicle. Some visual
results for motion generation with a delay of 1.8 s are shown in
Fig. 22.

For the proposed approach, it generates a visual driving in-
tention on the first frame according to local route plan and
renders a navigation score map with laser perception integrated.
Then for the following frames, the navigation score maps are
integrated from the driving intention in the first frame and the
laser perceptions in the subsequent frames. To indicate vehicle
movements inside the retained driving intention area, vehicle
previous poses are also plotted with discrete red dots as shown
in Fig. 22. The transformation of consecutive local coordinates
can be approximately estimated by laser map registration or the
inference from motion model.

In summary, the proposed method separates variations of
visual understanding with motion generation. Compared with
end2end approach, it demonstrates a better prediction perfor-
mance.

5. Conclusions

In this paper, an innovative learning model is developed for
automotive driving research with an intermediate representation
of driving intention. It is learned from image perception and
publicly available route planner to indicate the following driving
area. The intention area is adaptive for modular fusion and can be
efficiently encoded into a navigation score map for motion gen-
eration. In this way, variations of motion planning are separated
with those of visual understanding, which incorporates modu-
lar flexibility and reliability compared with end2end approach.
Nevertheless, the learning input of the method is the same as
end2end approach and does not rely on precise localization re-
sult. The key of the system is a cGAN network inserted with
LSTM unit to learn from human demonstration. The adversarial
loss enables a weakly-supervised training manner that leverages
single-modal demonstration data to achieve generalization on
multi-modal behaviors in strange scenarios. Experimental results
indicate the proposed method outperforms end2end approach in
both accuracy and robustness. Our future work will consider an
indoor visual navigation framework without precise localization.
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