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LiDAR-Camera Calibration Under Arbitrary
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Abstract— LiDAR-camera calibration is a precondition for
many multi-sensor systems that fuse data from LiDAR and
camera. However, the constraint from common field of view and
the requirement for time synchronization make the calibration
a challenging problem. In this paper, we propose a novel
LiDAR-camera calibration method aiming to eliminate these
two constraints. Specifically, we capture a scan of 3-D LiDAR
when both the environment and the sensors are stationary, then
move the camera to reconstruct the 3-D environment using the
sequentially obtained images. Finally, we align 3-D visual points
to the laser scan based on a tightly couple graph optimization
method to calculate the extrinsic parameter between LiDAR
and camera. Under this design, the configuration of these two
sensors is free from the common field-of-view constraint due
to the extended view from the moving camera. In addition,
we also eliminate the requirement for time synchronization as
we only use the single scan of laser data when the sensors are
stationary. We theoretically derive the conditions of minimal
observability for our method and prove that the accuracy of
calibration is improved by collecting more observations from
multiple scattered calibration targets. In addition, the proposed
method is beneficial to not only plane measurement error-based
calibration targets, such as chessboards, but also other point
measurement error-based calibration targets, such as boxes and
polygonal boards. We validate our method on both simulation
and real-world data sets. Experiments show that our method
achieves higher accuracy than other comparable methods, which
is in accordance with our theoretical analysis.

Index Terms— Arbitrary configuration, eliminating time vari-
able, LiDAR and camera calibration, observability.

NOMENCLATURE

{C} The reference camera coordinate system.
{L} The reference LiDAR coordinate system.
C pc A 3-D visual feature point (triangulated from

image pixels) on the chessboard in {C}, C pc ∈ R
3.

L pc A 3-D visual feature point on the chessboard in
{L}, L pc ∈ R

3.
L p f A 3-D visual feature point in {L}, L p f ∈ R

3.
C p f A 3-D visual feature point in {C}, C p f ∈ R

3.

Manuscript received March 8, 2019; revised July 7, 2019; accepted
July 18, 2019. Date of publication July 29, 2019; date of current version
May 12, 2020. This work was supported in part by the National Key
Research and Development Program of China under Grant 2017YFB1300400,
and in part by the National Nature Science Foundation of China under
Grant U1609210. The Associate Editor coordinating the review process was
Pekka Keränen. (Corresponding authors: Yue Wang; Rong Xiong.)

The authors are with the State Key Laboratory of Industrial Control
and Technology, Zhejiang University, Hangzhou 310058, China (e-mail:
wangyue@iipc.zju.edu.cn; rxiong@zju.edu.cn).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2019.2931526

p� A 3-D laser point in {L}, p� ∈ R
3.

n� The normal vector of p�, n� ∈ R
3.

L
Ck

x The pose of the camera at time tk in {L}, L
Ck

x ∈
SE(3).

L
C x The extrinsic parameter of {C} with respect to

{L}, L
C x ∈ SE(3).

C
Ck

x The pose of the camera at time tk in {C}, C
Ck

x ∈
SE(3).

I. INTRODUCTION

APERCEPTION system that employs only one sen-
sor will not be robust. For example, LiDAR-based

odometry [1] will fail when working in a long corridor, and the
camera-based algorithm [2]–[4] cannot be applied to a texture-
less scene [5]. Fusing the visual and laser data can eliminate
the outliers from the algorithm and solve various limitations
for the algorithms imposed by the single sensor. For example,
the fusion of the range sensor and the camera can improve the
accuracy of object detection [6]. What is more, heterogeneous
localization methods, such as visual localization on a laser
map [7], can enable low-cost and long-term localization. The
precondition of all the above algorithms is the calibration of
different sensors, and to that end, we focus on the extrinsic
calibration of the LiDAR and camera in this paper.

Numerous efforts have been carried out to perform
LiDAR–camera extrinsic calibration [8]–[10]. The current cal-
ibration approaches can be classified into two groups [11]:
one is appearance-based and the other is motion-based. The
appearance-based methods can calculate the extrinsic parame-
ter by directly matching 2-D images with 3-D points on the
laser point cloud. In the motion-based methods, the motion of
the camera is estimated from images, while the motion of the
LiDAR is estimated from the laser points, and then calibration
is performed by aligning the two trajectories.

First, we will consider the appearance-based methods.
Methods such as [12] and [13] use targets that can be
detected on both 2-D images and 3-D laser point clouds.
Geiger et al. [14] presented a method to automatically cal-
ibrate the extrinsic parameter with one shot of multiple chess-
boards, which recovered the 3-D structure from the detected
image corners. After that, the approach used the constraint
that the chessboard planes should coincide with the detected
LiDAR planes to perform calibration. The method was applied
in the KITTI data set [15] to calibrate the extrinsic parameter
between the cameras and the LiDAR sensor. Unlike the
approaches above, Wang et al. [16] utilized the reflectance
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intensity to estimate the corners of the chessboard from the
3-D laser point cloud. If the corners of the 3-D laser point
cloud are identified, the extrinsic calibration is converted to a
3-D–2-D matching problem. However, these algorithms always
require the sensors sharing a common field of view, which
some application scenarios cannot satisfy. Even in the appli-
cation scenario where the condition is met, the requirement
of the common field of view constrains the scale of the
scene and limits the number of targets that can be detected,
thus affecting the accuracy of the calibration, which prevents
the utilization of pinhole cameras from the LiDAR–camera
system. In some methods, panoramic or wide-angle cameras
are used to solve this problem [17]. Some methods lead to
the tedious focus process in order to expand the field of view
such as [10].

On the other hand, the motion-based methods [18], [19]
perform calibration by aligning the estimated motion trajec-
tories. Early motion-based calibration methods were based
on hand-eye calibration [20]. In [11], the initial extrinsic
parameter is calculated from scale-free camera motion and
LiDAR motion. Next, the camera motion is recalculated using
the initial extrinsic parameter and the point cloud from the
LiDAR, and then, the extrinsic parameter is calculated again
using the motion, and this is repeated until the estimate
converges. However, the motion-based method is a loosely
coupled calibration method that cannot lead to high calibration
accuracy. In addition, the motion-based calibration method
needs to complete time synchronization before performing
calibration, which is not easy in some cases. In scenarios
where time synchronization is not completed, an additional
variable (i.e., time offset) should be introduced. In [18], they
propose a method to obtain the motion of a sensor in 2-D–3-D
calibration and estimate the extrinsic parameter and the time
offset between the sensors. Obviously, introducing new vari-
ables will reduce the calibration accuracy.

In this paper, we propose a hybrid calibration method, which
combines the advantages of appearance-based calibration and
motion-based calibration. The demonstration of the proposed
method is shown in Fig. 1. In our method, a number of
chessboards in various poses are placed around the sensors,
and one frame laser scan of the chessboards is obtained under
stationary. Then, the sensors are moved around to obtain
images of each chessboard to reconstruct the 3-D visual point
cloud. Note that this differs from previous approaches [8], [9],
which require multiple images and the LiDAR data of a single
chessboard presented at different poses as inputs; the hidden
limitation of these methods is that a common field of view
between sensors is needed.

Our method expands the camera’s field of view by moving
the sensor, so even though there is no common view at
the starting position, the LiDAR and the “expanded camera”
can also have overlap in their measurement ranges, which
removes the configuration limitation for a common field of
view. Moreover, the extended field of view obtained can
remove the constraints of the observed scale of the scene
and increase the number of chessboards that can be detected,
which can lead to an increase in accuracy. Additionally,
we only use the first frame of laser as a map. In this

Fig. 1. Mathematical model of the calibration system.

way, we eliminate the time variable (i.e., time offset) from
the spatial extrinsic parameter estimating, which means that
we do not need to solve time variable (i.e., time offset)
and spatial variable (i.e., L

C x) together. So our method is
applicable to the cases lacking time synchronization and will
not introduce additional variables. As part of our contribution,
we also examine the observability properties of our system and
present the minimal necessary conditions for estimating the
LiDAR–camera extrinsic parameter. Furthermore, we derive
the influence of the angle and distance between calibration
targets on the calibration accuracy, which proves that sharing
a larger field of view between sensors is beneficial for better
calibration accuracy. The relevant theory provides a guideline
for designing high-accuracy calibration procedures.

This paper is structured as follows. Section II gives a
detailed description of the proposed method. Then, we prove
the theory in Sections III and IV and evaluate it in Section V.
We present our conclusions in Section VI.

II. CALIBRATION METHOD

The extrinsic parameter between the camera and the LiDAR
is the relative pose L

C x of the camera coordinates {C} with
respect to the LiDAR coordinates {L}. Thus, a visual 3-D
point C pc represented in {C} can be transformed into {L}
via L pc = L

C x ⊗ C pc, where ⊗ represents the multiplication
between SE(3) and the homogeneous coordinates of R

3, and
the result is represented in R

3. Assumed that C pc is on a plane,
then we have the model of the LiDAR vision system as

nT
� (LC x ⊗ C pc − p�) = 0 (1)

where p� and n� is a laser point and its normal on the
same plane. During calibration, LC x is the unknown. The basic
idea for estimation is to utilize the model (1) for constraints’
formulation. Following this idea, there are three problems to
solve: detection of the plane from vision data, detection of
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Fig. 2. Overview (using a simulation experiment as an example). First, we extract the chessboard corner points from the camera images and then reconstruct
the 3-D visual point clouds. Second, we filter out the chessboard plane in the obtained laser data. Third, we optimize the point-to-plane error to estimate the
extrinsic parameter.

the corresponding plane from LiDAR data, and design of the
estimator for L

C x .
We propose a method consisting of three modules. The

overview is shown in Fig. 2. To simplify the detection of
plane in both models of data, we place several chessboards
in the scene [21], [22]. The first module utilizes the image
stream acquired by the moving camera to map the surrounding
environment using simultaneous localization and mapping
(SLAM) [23] and extracts the boards using the detector gen-
erally employed in camera intrinsic parameters’ calibration.
The second module is to extract these boards in the first
LiDAR scan using plane model-based random sample con-
sensus (RANSAC) [24] with the aid of mechanic extrinsic
parameter. After the two steps, we have the laser points and
visual points on the planes required in model (1). The last
module is a regularized optimizer to estimate L

C x by including
the constraints of natural features, yielding a more accurate
result.

Note that for visual detection, a sequence of image is used,
while for LiDAR detection, only the first scan is used. The
main reason for this processing step is to eliminate the time
offset between the camera and LiDAR. Specifically, as shown
in Fig. 1, in the sensor system, the extrinsic parameter L

C x is
actually the first camera pose in {L} (i.e., L

C0
x). Denote the

pose of LiDAR in {L} at time t0 as L
L0

x , and L
L0

x = I4 (since
{L} = {L0}), where I4 is a 4 × 4 identity matrix. In the ideal
case, we have

L
L0

x = L
C0

xLC x
−1

. (2)

When there is a time synchronization error, the equation
becomes

L
Lδ

x = L
C0

xLC x
−1

(3)

where L
Lδ

x is the LiDAR pose in {L} at time t0 + δt , and δt
is a small time offset. When motion-based method is applied,
the displacement from t0 to t0 + δt is ignored, causing the
calibration error. However, as we only use the first LiDAR scan

and the two sensors can be stationary when the first LiDAR
scan is acquired, we have

L
L0

x = L
Lδ

x = L
C0

xLC x
−1

. (4)

As a result, the proposed calibration method is applicable for
cases without time synchronization and no additional variables
for estimation are introduced. In sequel, we present the three
modules in detail.

A. Visual Plane Extraction

The aim of this module is to build the 3-D points on
the chessboard from continuous camera images. We run
ORB-SLAM [25] first to estimate the trajectory of the camera
{CCk

x}, as well as the 3-D visual feature points {C p̄ f }. In the
case of a monocular camera, we use the scale of the chessboard
to compute the metric, while for the stereo camera, the scale
is known with the aid of baseline. Due to the existence
of observation error, the quality of the reconstructed 3-D
points varies, which is expressed by the depth uncertainty
in ORB-SLAM [25]. To reduce error, we only pick the
high-quality 3-D visual points for further processing. The
quality of a point is measured by

Scorec = Na − γ Nb (5)

where Na is the number of frames that observe the point
(higher is better) and Nb is the depth uncertainty calculated
in ORB-SLAM (lower is better). γ is a tradeoff parameter,
empirically choosing 0.1 in our experiments.

We remove points with scores less than a certain thresh-
old (empirically choosing 0.8 in our experiments), i.e., poor
reconstruction quality. After this step, we obtain the filtered
visual points {C p f } ⊆ {C p̄ f }. Then, to distinguish the 3-D
points of the chessboard in {C p f }, we extract the corners
of the chessboard [26] in each image. If any of the recon-
structed points {C p f } has image projections in accordance to
the chessboard corners, we assign the points as chessboard
points {C pc} ⊆ {C p f }. Finally, we perform global bundle
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adjustment [27] to further improve the accuracy of the points
{C p f } and poses {CCk

x}.
This step provide the points on planes {C pc} required in (1).

Even though building 3-D points of chessboard corners using
only one static image is possible, the crucial advantage of
utilizing a moving camera is the expansion of the field of view.
Therefore, multiple chessboards can be observed and repre-
sented in {C}. Besides, multiple chessboards can be placed
scattered around the sensor system, which is able to provide
better constraints, leading to superior calibration performance,
as shown in theoretic analysis and experiments’ parts.

B. LiDAR Plane Extraction

The second module set is to extract the planes in the first
LiDAR scan and find their correspondence to visual points
on chessboards {C pc}. We begin the processing by computing
the normals for each laser point. Then, region growing [28]
is applied to cluster the laser points with similar properties.
Specifically, the criteria of the region growing are whether
the neighboring point has similar normal. After this step,
we have several hypotheses, i.e., clusters, where each one
potentially contains points on the chessboard. To further filter
the hypotheses, we apply plane-based RANSAC [24] to pick
hypothesis with sufficient inliers (empirically choosing 800 in
our experiments). As a result, we have a set of points {p�} and
corresponding normals {n�} acquired from the chessboards.

Before the calculation of the extrinsic parameter, we have
to find the data association between {p�} and {C pc}, or
the model (1) may become incorrect constraints, leading
to failure in extrinsic parameter estimation. To obtain the
data association, the mechanical extrinsic parameter is used
as a rough value of L

C x to transform C pc to L pc. Then,
we build a K -dimensional tree (KD-tree) structure [29] for
laser points, so that for each visual point, the nearest three
laser points can be searched efficiently, denoted as a 4-tuple
(C pc, p�1, p�2, p�3). Generally, such method may cause incor-
rect point-to-point data association. However, both {p�} and
{C pc} are only the points on the chessboards, thus very
sparse. Therefore, it is almost impossible that a point on one
chessboard is associated with one on another chessboard. After
the initial data association, we evaluate the model fitness of a
4-tuple

Score� =
3∑

i=1

|nT
�i

(L pc − p�i )| (6)

where n�1 , n�2 , and n�3 are the normal vectors corresponding
to p�1 , p�2 , and p�3 . We remove the 4-tuple with scores
larger than a certain threshold (empirically choosing 0.3 in
our experiments), i.e., poor model fitness. The remaining
tuples specify all the parameters in model (1), formulating
the constraints for extrinsic parameter calibration.

Note that the parameters used in plane extraction from
visual and LiDAR data can be sensitive when the chessboards
are far from the sensor system. Thanks to the moving camera,
we can place the chessboards near the system without con-
cerning limited space for multiple chessboards as shown in
the experiments.

C. Optimization for Calibration

Given 4-tuples (C pc, p�1, p�2, p�3) and the normals corre-
sponding to the laser points, we can formulate the equation
system based on the model (1). However, this formulation
intrinsically treats the result of the ORB-SLAM as rigid
observation, regardless of the unequal uncertainty in each map
point. To consider this property, we add the global bundle
adjustment [27] as a constraint in the cost function in addition
to (1). Therefore, the visual features which are not from
the chessboard are also employed, i.e., {C p f }\{C pc}. As the
equation system is over determined, we formulate the problem
as optimization with the cost function

E =
∑
k,i

Eproj
(L
Ck

x,L p fi

) +
∑

i

E pl
(L

pci

)
(7)

where the first part indicates the cost of bundle adjustment,
while the second part stands for the model error. Specifically,
E proj (

L
Ck

x,L p fi ) represents the reprojection error term for the
kth camera pose and the i th feature point

Eproj(
L
Ck

x,L p fi ) = ρ
(
hT

ik�ikhik
)

(8)

with

hik � π
(L

p fi ,
L
Ck

x
) − uik (9)

where ρ(·) is the Huber robust cost function [30], π(·, ·) is
the image projection function that projects the first entry to the
image with pose specified by the second entry, and uik denotes
the corresponding image feature point. �ik is the information
matrix encoding the uncertainty of each measurement yielded
by ORB detection [25]. Note that the visual feature points and
the camera trajectory are now represented in the coordinates
of {L}.

E pl(
L pci ) is the model error. Given the i th 4-tuple denoted

as (C pci , p�i,1 , p�i,2 , p�i,3), we have

E pl(
L pci ) =

3∑
j=1

ρ
(
yT

i j �L yi j
)

(10)

with

yi j � nT
�i, j

(L pci − p�i, j

)
(11)

where yi j is the point-to-plane error and �L is the information
matrix determined by covariance of the noise in LiDAR
measurement, which can be checked in the datasheet of the
LiDAR. Note that L pci are not new variables, and they are
part of the visual features L p fi , which are generated from the
chessboards.

We solve this optimization problem with the Gauss–Newton
algorithm [31] implemented in g2o [32]. The graph of the
whole optimization problem is shown in Fig. 3. The structure
of the problem is equivalent to the localization of a moving
camera in the map built by the first scan of LiDAR. Therefore,
the first pose L

C0
x̂ of the resultant estimated camera trajectory

{LCk
x̂} is the extrinsic parameter between the camera and the

LiDAR as mentioned before.
The main reason that we state all the variables in {L} is the

reduction of unknowns. If we represent the camera trajectory
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Fig. 3. Optimization of the camera state {LCk
x}, 3-D visual feature points

{L p f } with the reprojection constraint, the points belonging to the chessboard
are represented as {L pc} with the point-to-plane constraint. The LiDAR points
on the laser plane (i.e., {p�}) are observations which will not change with
time.

and visual feature points in coordinates {C}, an extra variable
is needed as extrinsic parameter. In addition, the proposed
method is for the points on the plane, which is the chessboard
in our experiments. The method can also be extended to the
point-based calibration targets when the form of the model
error is different, i.e., from point-to-plane error to point-to-
point error, which is shown in Appendix B.

III. OBSERVABILITY ANALYSIS

The observability analysis is able to identify the degenerated
case, which provides practice guideline when applying the
proposed method for calibration, thus very important. We first
model the proposed calibration process as a dynamic system,
of which the observability is then determined by looking at the
rank deficient of the observability matrix. Finally, the number
of the chessboard is connected to the observability analysis
to reflect the practical results. In sequel, we present the
observability analysis in this order.

A. Dynamic System Modeling

The state of the system is the unknowns in (7), i.e., LCk
x and

{L p fi } and {L pci }. To simplify the analysis, we assume that
all features are on chessboards, {L p fi } = {L pci }, and thus,
we only keep {L pci } in the state. We further represent L

Ck
x

by a translation vector L
Ck

p and a rotation matrix Ck
L R. Thus,

the final definition of the state at time tk consists of Ck
L R, L

Ck
p,

and {L pci }.
1) State Propagation: The error state of Ck

L R and L
Ck

p is
defined as

ξk = [LCk
θ̃

T L
Ck

p̃
T ]T (12)

with L
Ck

θ̃ satisfying

Ck
L R = Ck

L R̂
(
I3 − ⌊L

Ck
θ̃ × ⌋)

(13)

where Ck
L R̂ is the estimation of Ck

L R, �·×� is the skew matrix
expansion of a vector · ∈ R

3 [33]. And we also have:

L
Ck

p̃
T = L

Ck
p

T − L
Ck

p̂
T

, where L
Ck

p̂ is the estimation of L
Ck

p.

Then, the propagation of the rotation error state is

L
Ck+1

θ̃ � L
Ck

θ̃ + Ck
L R̂

TCk
Ck+1

θ̃ (14)

where Ck
Ck+1

θ̃ ∈ R
3 describing the relative camera rotation error

between {Ck+1} and {Ck} in {Ck}. For propagation of translation
error state, we have

L
Ck+1

p̃ � −⌊(Ck
L R̂

TCk
Ck+1

p̂
) × ⌋L

Ck
θ̃ + Ck

L R̂
TCk
Ck+1

p̃ + L
Ck

p̃ (15)

where Ck
Ck+1

p̃ is the relative camera translation error between
{Ck+1} and {Ck} in {Ck}. As the derivation of error state is not
the focus of this paper, we refer to [33] for readers who has
interests. For clearance in the following derivation, we denote
the shorthand notation of Ck

L R̂ as R̂k . Then, we write the error
state propagation function in a matrix form as

ξk+1 = φξk ξk + αk (16)

where

φξk �
[

I3 03×3

−⌊(
R̂T

k
Ck
Ck+1

p̂
) × ⌋

I3

]
αk �

[
R̂T

k
Ck
Ck+1

θ̃

R̂T
k
Ck
Ck+1

p̃

]
(17)

with 03×3 indicating a 3 × 3 zero matrix. When augmented
with m static visual features {L pci }, we have the full state
propagation function in the following:[

ξk+1
L pc1...M

]
= φk

[
ξk

L pc1...M

]
+

[
αk

03m×1

]
(18)

where L pc1...M is {L pci } stacked in column, and

φk �
[

φξk 06×3m

03m×6 I3m

]
. (19)

2) Linearized Measurements: According to the cost func-
tion (7), we have two kinds of measurement models: the
reprojection error (9) and the point-to-plane error (11). The
Jacobian of the reprojection error measurement Hik is

Hik = [
HCik 02×3 . . . H fik . . . 02×3

]
(20)

where the entries are defined as

H fik � ∂hik

∂L pci

= Jik · R̂k (21)

HCik � ∂hik

∂ξk
= H fik

[⌊(L p̂ci − L
Ck

p̂
) × ⌋ −I3

]
(22)

where Jik is the Jacobian of reprojection measurement
with respect to Ck pci , the i th visual feature in camera
coordinates {Ck}

Jik � 1
Ck p̂ciz

⎡
⎢⎢⎢⎣

1 0
−Ck p̂cix

Ck p̂ciz

0 1
−Ck p̂ciy

Ck p̂ciz

⎤
⎥⎥⎥⎦ (23)

Ck p̂ci �
[
Ck p̂cix

Ck p̂ciy
Ck p̂ciz

]T
(24)

where Ck p̂ci is the estimate of Ck pci .
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For the point-to-plane error measurement (11), we have the
Jacobian as

Yi j = [
01×6 01×3 . . . nT

� . . . 01×3
]

(25)

where Yi j is the Jacobian of the point-to-plane error mea-
surement (11) with respect to ξk and i th visual feature L pci .
As the camera pose is not involved in this class of mea-
surements, the Jacobian is much simpler than (20). As a
whole, the Jacobian of the measurement with respect to ξk

and i th visual feature L pci can be written as

Qik �
[

Hik

Yi j

]
. (26)

B. Rank Deficient of Observability Matrix

The observability matrix for the time interval between time
ts and ts+w is defined as

M �

⎡
⎢⎢⎢⎣

Qs

Qs+1φs
...

Qs+wφs+w−1 · · · φs

⎤
⎥⎥⎥⎦ (27)

where Qs is constructed by stacking Qis for all features in col-
umn. Directly analyze the null-space of M is not easy. Instead,
our idea to investigate the rank deficiency of M consists of
two steps. In the first step, we build an observability matrix
for the sub-system with only one class of measurement (9).
In the second step, we substitute the null-space derived from
the sub-system into the observability matrix for the full system
to see the change of rank deficiency when different numbers
of chessboards are given, leading to the final practical results.

1) Null-Space of Sub-System: For each block in (27),
we define the shorthand notation

Mk = Qkφk−1 . . . φs . (28)

Given the sub-system with only one type of measurement,
we have

M̆k = Hkφk−1 . . . φs (29)

where Hk is constructed by stacking Hik for all features in
column. We further define that

M̆ik � Hikφk−1 . . . φs = Jik R̂k
[
ik −I3 03×3

. . . I3 . . . 03×3
]

(30)

where we have

ik �
⌊(L p̂ci − L

Cs
p̂
) × ⌋

. (31)

Directly, we have M̆k represented by

M̆k �
[
M̆T

1k . . . M̆T
ik . . . M̆T

mk

]T
. (32)

At this point, we derive the null-space of M̆ =[
M̆T

s . . . M̆T
k . . . M̆T

s+w

]T
as

N �

⎡
⎢⎢⎢⎢⎢⎣

03×3 I3

I3 −⌊L
Cs

p̂ × ⌋
I3 −⌊L p̂c1 × ⌋
...

...

I3 −⌊L p̂cm × ⌋

⎤
⎥⎥⎥⎥⎥⎦ . (33)

It is easy to verify that M̆ik N = 02×6. Since this holds for any
i and any k (i.e., for all blocks of the observability matrix),
we conclude that M̆ N = 02m(w+1)×6. As a result, the rank
deficient of the observability matrix for the sub-system is 6.

Note that the sub-system can be regarded as a scenario
that none of the chessboards is detected, so that there is
no data association between the LiDAR scan and visual
features. It is thus intuitive to understand the rank deficiency
that the extrinsic parameter cannot be determined in such a
scenario. In other words, the original problem is equivalent to
localization of moving camera in LiDAR scan as mentioned
above, which degenerates to general SLAM problem when no
data association between LiDAR scan and visual features is
found. For general SLAM system, the rank deficiency is 6
in accordance to the result derived in [33]. The unobservable
directions are corresponding to the first camera pose, L

C0
x ,

which is just the extrinsic parameter in our scenario.
2) Rank Deficient of Calibration System: When the full

system is considered, we have each block of (28)

Mik �
[

M̆ik

01×3 01×3 01×3 . . . nT
� . . . 01×3

]
. (34)

To look into the rank deficiency of the observability matrix M ,
we can multiply M with the null-space N in (33), and if any of
the direction becomes non-zero, the rank deficiency decreases
correspondingly.

a) Observation of one plane: Assuming there are two
points on the observed chessboard plane, namely the i th and
the j th visual feature points, we have

M(i, j )k �

⎡
⎢⎢⎣

M̆ik

M̆ jk

01×3 01×3 01×3 . . . nT
� . . . 01×3

01×3 01×3 01×3 . . . . . . nT
� 01×3

⎤
⎥⎥⎦ . (35)

Note that for both visual feature points, the normal of the
chessboard is the same, denoted as n�. Then, we have

M(i, j )k N1 = 06×3 (36)

where N1 is the null-space, which is a linear combination
of N . The details of derivation are described in Appendix A.
Since this holds for any i , j , and k, we conclude that M N1 =
03m(w+1)×3, which means the rank deficiency is 3. The result
is explained as when observing only one chessboard, any
translation parallel to the plane’s normal and any rotation
around the plane’s normal are unobservable.
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b) Observation of two planes: Assuming the i th feature
and the j th feature lie on two chessboards, of which the
normals are denoted by n�a and n�b , respectively, we have

M(i, j )k �

⎡
⎢⎢⎣

M̆ik

M̆ jk

01×3 01×3 01×3 . . . nT
�a

. . . 01×3

01×3 01×3 01×3 . . . . . . nT
�b

01×3

⎤
⎥⎥⎦ . (37)

Note that the third and fourth rows in (37) are different from
that in (35). For this block of observability matrix, we have

M(i, j )k N2 = 06×1 (38)

where N2 is the null-space which is described in Appen-
dix A. Since this holds for any i , j , and k, we conclude
that M N2 = 03m(w+1)×1. Therefore, when observing two
chessboards, translation along the direction perpendicular to
the normals of the two planes is unobservable.

c) Observation of three planes: Similar to the previous
derivation process, we conclude that when three planes with
non-collinear normals are observed, the rank deficiency is 0.
That is to say, the calibration system is fully observable at least
three non-parallel chessboards are observed. Intrinsically, this
result suggests that a larger common field of view between the
camera and the LiDAR is needed to guarantee the observability
and reliable detection of the calibration targets, which is
difficult for the static method as shown in experiments. The
details of derivation are described in Appendix A.

d) Observability of other calibration targets: As men-
tioned in Section II, switching the model to the point-to-point
error makes the method applicable to other types of cali-
bration targets, i.e., corners of polygonal planar boards [34]
and boxes [35]. Accordingly, the result of the observability
analysis for the point-to-point error is derived by switching
the last rows in blocks of observability matrix, that is (35)
and (37). The results for point-based calibration targets are
when observing only one point, any rotation is unobservable,
while observing two points, one degree of freedom of the
rotation is unobservable. When three non-collinear points are
observed, the extrinsic parameter is determined. Please refer
to Appendix B for derivation details.

IV. PLACEMENT OF CALIBRATION TARGETS

The previous analysis concluded that in order to calibrate
the six-DoF extrinsic parameter, three chessboards are needed
at least. How to place these three chessboards in space to get
the better calibration accuracy is what we will discuss next.
The following theory can provide a guideline for designing
high-accuracy calibration procedures.

To simplify the problem we are analyzing, we derive the
problem in 2-D and consider two chessboards that can still
provide insights into real-world applications. Analyzing the
calibration accuracy refers to analyzing the uncertainty of the
extrinsic parameter, which is measured by the determination
of the inverse covariance matrix. The larger the determinant of
the inverse covariance matrix, the smaller the uncertainty of
estimated extrinsic parameter, thus more accurate. Specifically,
we are going to investigate the influence of the angle and
distance between two chessboards.

Fig. 4. Specific explanation of the parameters and representation of 2-D.

A. Angle Between Calibration Targets

For clearance, we keep the notation but with a slight abuse.
In this section, all the notations indicate for the entities in 2-D
to support the analysis. As shown in Fig. 4, the angle of
chessboard b relative to chessboard a is β, the angle of {C}
relative to {L} is θ , and the extrinsic parameter L

C x is reduced
to three DoFs represented by

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
, t =

[
tx

ty

]
. (39)

Then, the point-to-plane error (11) is modified as

y = nT
� (R(θ)C pc + t − p�) (40)

where C pc is the 2-D visual point in the camera coordinate
system, R(θ) and t are the 2-D extrinsic parameters, p� is the
2-D laser point in the laser coordinate system, and n� is the
2-D normal vector of p�.

To describe the uncertainty of the extrinsic parameter,
we apply a linearized propagation based on the Jacobian
matrix

J �
[
nT

� (R(θ)�C pc) nT
�

]
(41)

where R(θ)� denotes the derivatives of R(θ) with respect to θ .
Assuming an isometric covariance matrix in the measurement,
we can derive the following inverse covariance matrix of
extrinsic parameter as:

H � J T J. (42)

In order to explore the placement of the chessboards,
we have further simplified the situation. Assume that the
normal vector of the chessboard a is

n�a �
[
1 0

]T
. (43)

Then, the normal vector of the chessboard b is

n�b �
[
cos β sin β

]T
. (44)

Thereafter, we take two points C pc1 and C pc2 from the
chessboard a and one point C pc3 from the chessboard b.
Following (42), we have:

H � J T
1 J1 + J T

2 J2 + J T
3 J3

J1 �
[
nT

�a
(R(θ)�C pc1) nT

�a

]
J2 �

[
nT

�a
(R(θ)�C pc2) nT

�a

]
J3 �

[
nT

�b
(R(θ)�C pc3) nT

�b

]
(45)
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Fig. 5. Schematic of (47).

of which the determinant is derived analytically

|H | = (κ1 + κ2)
2 sin2(β) (46)

where C pc1 �
[

pc1x
pc1y

]T
, C pc2 �

[
pc2x

pc2y

]T
, κ1 �

sin θ(pc1x
− pc2x

), and κ2 � cos θ(pc1y
− pc2x

).
It can be seen that when β = π/2, |H | takes the maximum

value, that is, when the angle between the two chessboards
is 90◦, the uncertainty of the estimated extrinsic parameter is
the smallest.

B. Distance Between Calibration Targets

The conclusion of Section IV-A is that the calibration error
uncertainty is smallest when the two chessboards are placed
orthogonal to each other. In this section, when the angle
between the two chessboards is fixed, we discuss the effect
of the distance between two chessboards.

Following (46), when the angle is fixed, we have:
|H | = (κ1 + κ2)

2. (47)

The illustration of (47) can be seen in Fig. 5.
We can find that when the relative angle between the

chessboards is fixed in 90◦, the uncertainty of the extrinsic
parameter can be reduced by increasing the relative distance
between the two visual observations on one chessboard. More
intuitively, this result requires a very large chessboard so that
visual observations on the chessboard can be larger. However,
the requirement of large chessboard and the orthogonality
between the two chessboards are hard to be satisfied at the
same time in reality due to the limited view of camera. These
results suggest that it is possible to improve the calibration
accuracy by moving the camera since more scattered observa-
tions can be made.

Comments:
1) Combining the analysis of observability and the mini-

mal necessary conditions for calibration, we conclude
that at least three chessboards are required and more
chessboards can lead to better calibration accuracy.

2) With the same number of calibration targets, a scattered
placement is better than a centralized one, which is
expected to be true in 3-D.

3) The extended camera field of view obtained by our
method meets the requirement of observing multiple
calibration targets, which is difficult in those methods
that keep the sensors stationary.

Fig. 6. Sensor configuration. Top: VLP-16 LiDAR and vision sensor in the
simulation environment. Bottom: VLP-16 LiDAR and Pointgrey camera in
the real world.

4) Observing multiple calibration targets arranged in vari-
ous poses by the extended field of view also gives our
method an advantage compared to the appearance-based
method.

V. EXPERIMENTAL RESULTS

In order to evaluate our method, we performed simulation
verification and real-world experiments separately. In the sim-
ulation experiments, we showed that the placement theory
derived in Section IV is reasonable by performing our cali-
bration method with calibration targets placed in scattered and
centralized arrangements, respectively. Then, we made seven
experiments in accuracy comparison section in order to com-
pare with other methods. We built a simulation environment
in V-REP [36], using a stereo vision sensor and a Velodyne
VLP-16 LiDAR to obtain data, as shown in Fig. 6 (top). In the
real-world experiments, the comparison with other methods is
also performed demonstrating the practicality of the proposed
method. As shown in Fig. 6 (bottom), we fixed two Pointgrey
cameras with a Velodyne VLP-16 LiDAR on the robot to
perform the real-world experiments.

A. V-REP Simulation

In the simulation environment, the final calibration L
C x is

expressed as rotation R and translation t . R and t are compared
against ground truths Rg and tg , which are obtained from
V-REP. Following [14], for the translation error, we computed

t −tg
 in meters. For the rotation error, we first computed the
relative rotation δR = R−1 Rg and represented it in degrees
by axis-angle representation.

1) Theoretical Verification: We first verify the theoretically
derived conclusions. Due to the existence of observation errors,
the angle and distance between the calibration targets are
highly coupled, and it is impossible to perform control vari-
ables to verify the influence of angle and distance separately.
We only verify the final conclusions derived from the theory.
As shown in Fig. 7(a) and (b), we placed four chessboards
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Fig. 7. Scenes for obtaining data with chessboards. (a) and (b) Obtaining
data in the scene in which four chessboards are placed nearly vertical to the
ground. (c) Placement of the chessboards and the sensors to collect the data
required by the KITTI single-shot method. (d) Obtaining data in the scene in
which seven chessboards are placed in various poses.

around the sensor and used our method to obtain data for
calibration. In order to simulate the situation in 2-D, four
chessboards are placed nearly vertical to the ground, and one
set is centralized in front of the field of view, while the
other is scattered around the sensor. For providing sufficient
constraints for calibration, we made the experiment in which
the chessboards are placed at a 5◦ angle to the direction of
gravity.

In this experiment, we added Gaussian noise N (0, σ 2)
to the laser data for varying values of σ and carried out
calibration. We calculated the errors between the calibration
result and ground truth, which is used for drawing box plot
to evaluate the error mean and dispersion of the error. This
process is repeated 100 times and the dispersion is used to
evaluate the uncertainty of the estimated extrinsic parameter.
The results, shown in Fig. 8, indicate that the calibration
accuracy is better when the angle between the two chessboards
is 90◦, as shown in Fig. 7(b), which is consistent with the
conclusion of Section IV. As shown in Fig. 7(a) and (b),
in order to obtain a larger common field of view between
the two sensors to observe four chessboards, the camera’s
extended field of view obtained by our method is needed.

2) Accuracy Comparison: Next, we compared our method
with the KITTI single-shot method [14] on calibration accu-
racy. The KITTI single shot calibration method can automat-
ically give the extrinsic calibration results in one acquisition,
which is convenient to use. As shown in Fig. 7(c), the method
requires placing multiple chessboards in front of the field

Fig. 8. Theoretical verification results: errors from the ground truth of
the calibration result by our method with chessboards placed centralized and
scattered.

Fig. 9. Scenes for obtaining data. (a) and (b) Obtatining data with polygonal
planar boards placed centralized and scattered. (c) and (d) Obtatining data
with boxes placed centralized and scattered.

of view and obtaining the LiDAR and camera data in one
shot, respectively. However, if one wants to obtain as much
data as possible from the chessboards, the sensors should be
placed much farther away from the chessboards, which can
be easily seen from Fig. 7(c). Once the sensor is too far
from the chessboards, it is often difficult to extract the corner
points from the obtained camera image, and the laser lines
hitting the chessboards are also reduced. Another main limiting
assumption of the single-shot method is the common field of
view between camera and LiDAR.

As shown in Fig. 7(d) (top and bottom), we then obtained
two sets of data for seven chessboards centralized and scattered
in a certain field of view and evaluated proposed method
(labeled as chessboard method). Unlike the KITTI single-shot
method, when we captured the camera images, we moved the
robot around to obtain images of each chessboard, and then
reconstructed the 3-D visual points in the space.

Our method does not limit the calibration target, so we used
polygonal planar boards [34] [labeled as polygonal method,
as shown in Fig. 9(a) and (b)] and boxes [35] [labeled as box
method, as shown in Fig. 9(c) and (d)] as calibration targets
for a complement to this paper. As the detection of the corner
is not the point in this paper, for the LiDAR point clouds,
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TABLE I

ACCURACY COMPARISON RESULTS: ERRORS OF THE CALIBRATION
RESULT BY THE SINGLE SHOT METHOD, THE CHESSBOARD

METHOD, THE POLYGONAL METHOD,
AND THE BOX METHOD

we manually extracted the corner points of the polygonal
planar boards or the calibration boxes from V-REP and added
noise; for the image data, we manually picked the planar
boards and boxes’ feature points from the image feature points.
The experiments are set to examine whether the theory is
feasible and effective in the scenario when point measurement
error-based calibration target is considered. In order to verify
the conclusions of the theoretical derivation, we obtained
two sets of data for seven calibration targets centralized and
scattered in a certain field of view for the polygonal method
and the box method.

The results, shown in Table I, indicate that the proposed
method achieves better calibration results than the KITTI
single-shot method, because the camera’s field of view limits
the number of laser lines hitting the chessboards and the
number of observed chessboards in the single-shot method.
It can also be seen in Table I that polygons and boxes achieve
higher accuracy than chessboards since the point-to-point error
model provides more constraints than the point-to-plane error.
The important finding is that, for each calibration target,
the calibration results of the scattered placement are better
than the centralized placement, which is consistent with the
theoretic results in Section IV, suggesting that our method is
a general back end to various kinds of detector.

B. Real-World Experiment

We conducted real-world experiments to compare the pro-
posed method with three calibration methods: the KITTI
single shot calibration method [14]; MO methods: the method
needs multiple pairs of images and LiDAR data of a single
calibration target presented in different poses when the sensor
system keeps statically, similar to [8] and [9]; and motion-
based calibration method: the method estimates the extrinsic
parameter by aligning the trajectories of camera and LiDAR.

We obtained one set of data for the KITTI single shot, two
sets of data in which the chessboards were placed scattered
and centralized for our method, and two sets of data for the
motion-based calibration. And we obtained one set of data
for the MO calibration method, including 67 corresponding
laser scans and camera images under different poses. The
67 pairs of laser scans and camera images were divided into
two parts. The first 30 data pairs were used for the MO method
to calibrate the extrinsic parameter and the last 37 remaining
data pairs were used to blind test the accuracy of all methods.
We evaluated the calibration results estimated by different
methods with the point-to-plane error, which is computed for
each visual point according to (11). The average point-to-plane

Fig. 10. Real-world experiment results: calibration errors for (a) motion-
based non-sync, (b) motion-based with sync, (c) MO-10, (d) MO-20,
(e) MO-30, (f) KITTI single shot, (g) centralized, and (h) scattered.

error for each feature point of each method is given by

εpl =
√∑m

i=1
∑3

j=1

(
nT

�i, j

(L pci − p�i, j

))2

3m
(48)

where m is the number of visual feature points in the data,
p�i, j is an associated laser point for L pci from data association
above, and n�i, j is the normal vector of p�i, j . In order to
show the uncertainty in real-world experiment, we used the
bootstrapping method [37] that relies on random sampling
with replacement in test data to approximate the variance.
We conducted 100 samples to get 100 sets for calculating
point-to-plane error, which is used to get mean error and
standard deviation. We use the standard deviation to evaluate
the uncertainty of the blind testing error. The calibration error
is shown in Fig. 10.

The KITTI single shot calibration method does not give an
accurate result in the case of the Velodyne VLP-16 LiDAR due
to the insufficient lines, as shown in Fig. 10. The calibration
results of our scattered placement calibration method are
better than the calibration results of the centralized placement,
which is consistent with the conclusion of Section IV. This
result proves once again that when the calibration target
is static, a larger common field of view between the two
sensors obtained by our method can lead to a better calibration
accuracy.

We made two experiments for the motion-based method,
one is called the motion-based non-sync method, for which
we did not complete the hardware synchronization between
the two sensors. The other is called the motion-based with
sync method, for which we completed a rough hardware syn-
chronization by finding the nearest neighbor on the timestamps
of the two sensors. For the motion-based calibration method,
time synchronization is not easy; even if a rough time syn-
chronization is completed, the calibration result is not as good
as the proposed method, which eliminates the time variable,
as shown in Fig. 10.

For the MO calibration method, we did another set of
experiments by varying the number of laser and image
data pairs to explore the relation between the accuracy
and the data number. We randomly selected 10 (MO-10),

Authorized licensed use limited to: Zhejiang University. Downloaded on May 14,2020 at 07:07:19 UTC from IEEE Xplore.  Restrictions apply. 



FU et al.: LiDAR-CAMERA CALIBRATION UNDER ARBITRARY CONFIGURATIONS: OBSERVABILITY AND METHODS 3099

Fig. 11. Results of our calibration of the laser data re-projected into the
image. The yellow points on the chessboard are the points observed by LiDAR
but not observed by the camera due to the occlusion.

20 (MO-20), and 30 (MO-30) pairs of laser scans and camera
images from the aforementioned 30 data pairs to make a
comparison experiment. It can be seen in Fig. 10 that with
more data used for calibration, the accuracy of the MO
calibration method also increases and MO-30 achieves results
that are only worse than our calibration method. However,
the MO method is time-consuming to use and needs a common
field of view between the sensors, which limits its use to some
extent.

Compared with other methods, we have summary about
our method. First, the extended field of view obtained by
our method can improve the chance to satisfy the proposed
theoretic results, thus improving the calibration accuracy,
and our method can be applied to a case with an arbitrary
configuration, which is beneficial and necessary in practical
use. Second, our method eliminates the time variable from the
spatial extrinsic parameter estimating, so it is applicable to
the cases lacking time synchronization and will not introduce
additional variables. That is to say, our error term does not
include laser motion estimation error and time offset error.
Third, the proposed method may be applied for calibrating
multiple cameras and LiDAR devices. When the proposed
method is used for calibration between two LiDAR devices
under arbitrary configurations, one of the LiDAR devices can
be considered as a camera to run laser SLAM [38]. Finally,
we show an example of the laser data reprojected into the
image, which allows us to see the accuracy of the calibration
qualitatively, as shown in Fig. 11.

VI. CONCLUSION

We proposed a LiDAR-camera extrinsic calibration method
eliminating the time variable regardless of the limitation of
sharing a common field of view. Furthermore, we analyzed
the observability of the calibration system and derived how
the calibration targets can be placed better to improve the
accuracy of the extrinsic calibration. Then, we made a full
comparison with other methods through both simulation and

real-world experiments, which showed that our method has
more chance to satisfy the theoretic findings, thus achieving
a better calibration result. In order to simplify the calibration,
our next work is to study a calibration method that does
not require calibration target and still maintains calibration
accuracy.

APPENDIX

A. Observability With Point-to-Plane Error

What follows is the analysis about the minimal necessary
conditions of the chessboards setting to solve the accurate
six-DoF extrinsic calibration problem.

1) Observation of One Plane: Assuming there are two
points on the observed chessboard plane, namely the i th and
the j th visual feature points, we have

M(i, j )k �

⎡
⎢⎢⎣

M̆ik

M̆ jk

01×3 01×3 01×3 . . . nT
� . . . 01×3

01×3 01×3 01×3 . . . . . . nT
� 01×3

⎤
⎥⎥⎦ . (49)

Note that for both visual feature points, the normal of the
chessboard is the same, denoted as n�. Then, we can have

M(i, j )k N =
⎡
⎣ 04×1 04×1 04×1 04×1

n1 n2 n3 n3 pi2 − n2 pi3
n1 n2 n3 n3 p j2 − n2 p j3

04×1 04×1
−n3 pi1 + n1 pi3 n2 pi1 − n1 pi2
−n3 p j1 + n1 p j3 n2 p j1 − n1 p j2

⎤
⎦ (50)

where nT
� �

[
n1 n2 n3

]
, L pci �

[
pi1 pi2 pi3

]T, and L pc j �[
p j1 p j2 p j3

]T. Next, we perform an elementary linear trans-
formation on the above equation. That is, both sides of (50)
are multiplied by matrix A1

A1 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −n2

n1
−n3

n1
0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 n1
0 0 0 0 1 n2
0 0 0 0 0 n3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(51)

M(i, j )k N A1 =
⎡
⎣ 04×1 04×1 04×1 04×1

n1 0 0 n3 pi2 − n2 pi3
n1 0 0 n3 p j2 − n2 p j3

04×1 04×1
−n3 pi1 + n1 pi3 0
−n3 p j1 + n1 p j3 0

⎤
⎦ . (52)

As shown, there are three columns of M(i, j )k N A1 that
become all zeros. So, the second, third, and sixth columns
of N A1 are the null-space of M(i, j )k , and we denote it as N1
and can get

M(i, j )k N1 = 06×3. (53)

Since this holds for any i , j , and k, we conclude that
M N1 = 03m(w+1)×3. Note that the first three columns of N A1
correspond to global translations of the state vector, while
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the last three columns to global rotations. Therefore, when
observing only one plane, any translation parallel to the plane’s
normal and any rotation around the plane’s normal vector are
unobservable.

2) Observation of Two Planes: Assuming that the i th fea-
ture and the j th feature lie on two chessboards, of which the
normals are denoted by n�a and n�b , respectively, we have

M(i, j )k �

⎡
⎢⎢⎣

M̆ik

M̆ jk

01×3 01×3 01×3 . . . nT
�a

. . . 01×3

01×3 01×3 01×3 . . . . . . nT
�b

01×3

⎤
⎥⎥⎦ . (54)

Then, we can obtain

M(i, j )k N =
⎡
⎣ 04×1 04×1 04×1 04×1

na1 na2 na3 na3 pi2 − na2 pi3
nb1 nb2 nb3 nb3 p j2 − nb2 p j3

04×1 04×1
−na3 pi1 + na1 pi3 na2 pi1 − na1 pi2
−nb3 p j1 + nb1 p j3 nb2 p j1 − nb1 p j2

⎤
⎦ (55)

where nT
�a

�
[
na1 na2 na3

]
and nT

�b
�

[
nb1 nb2 nb3

]
.

Next, we perform an elementary linear transformation on
the above equation. That is, both sides of (55) are multiplied
by matrix A2

A2 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −na2

na1

na2

na1
� − na3

na1
0 0 0

0 1 −� 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(56)

� � nb3na1 − nb1na3

nb2na1 − nb1na2
(57)

M(i, j )k N A2

=
⎡
⎢⎣

04×1 04×1 04×1
na1 0 0

nb1 nb2 − nb1na2

na1
0

04×1 04×1 04×1
na3 pi2−na2 pi3 −na3 pi1+na1 pi3 na2 pi1−na1 pi2
nb3 p j2−nb2 p j3 −nb3 p j1+nb1 p j3 nb2 p j1−nb1 p j2

⎤
⎦ .

(58)

As shown, the third column of N A2 is the null-space of
M(i, j )k , and we denote it as N2 and can get

M(i, j )k N2 = 06×1. (59)

Since this holds for any i , j , and k, we conclude that
M N2 = 03m(w+1)×1. Therefore, when observing two chess-
boards, translation along the direction perpendicular to the
normals of the two planes is unobservable.

3) Observation of Three Planes: Similar to the previous
derivation process, we conclude that when three planes with
non-collinear normals are observed, the rank deficiency is 0.
That is to say, the calibration system is fully observable,
at least three non-parallel chessboards are observed.

B. Observability With Point-to-Point Error

Our calibration method can use different calibration targets,
for example, polygonal planar boards [34] or boxes [35].
For the data obtained by above calibration targets, the error
measurement is the point-to-point error measurement yi for
feature i

yi = L pci − p�i . (60)

Thus, the measurement Jacobian matrix Qik at time tk for
feature i is given by

Qik �
[

Hik

Yi

]
=

[
HCik 02×3 . . . H fik . . . 02×3
03×3 03×3 . . . I3 . . . 03×3

]
(61)

where Yi refers to the Jacobian matrix of yi with respect to ξk

and i th visual feature L pci . What follows is the analysis about
the minimal necessary conditions of the point pairs setting to
solve the accurate six-DoF extrinsic calibration problem.

1) Observation of One Point: Assuming there is a point on
the observed chessboard plane, namely the i th visual feature
points, we have

Mik �
[

M̆ik

03×3 03×3 03×3 . . . I3 . . . 03×3

]
. (62)

Then, we can have

Mik N =

⎡
⎢⎢⎣

02×1 02×1 02×1 02×1 02×1 02×1
1 0 0 0 pi3 − pi2
0 1 0 − pi3 0 pi1
0 0 1 pi2 − pi1 0

⎤
⎥⎥⎦ (63)

where L pci �
[

pi1 pi2 pi3
]T. Next, we perform an elemen-

tary linear transformation on the above equation. That is, both
sides of (63) are multiplied by matrix A3

A3 �

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −pi3 pi2
0 1 0 pi3 0 −pi1
0 0 1 −pi2 pi1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(64)

Mik N A3 =

⎡
⎢⎢⎣

02×1 02×1 02×1 02×1 02×1 02×1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎦ . (65)

As shown, there are three columns of Mik N A3 that become
all zeros. So the fourth, fifth, and sixth columns of N A3 are
the null-space of Mk , and we denote it as N3 and can get

Mik N3 = 05×3. (66)

Since this holds for any i and k, we conclude that M N3 =
05m(w+1)×3, which means the rank deficiency is 3. Therefore,
when observing only one point, any rotation is unobservable.

2) Observation of Two Points: The observability matrix of
features i and j at time tk is as follows:

M(i, j )k �

⎡
⎢⎢⎣

M̆ik

M̆ jk

03×3 03×3 03×3 . . . I3 . . . 03×3
03×3 03×3 03×3 . . . . . . I3 03×3

⎤
⎥⎥⎦ . (67)
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Then, we can have

M(i, j )k N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

04×1 04×1 04×1 04×1 04×1 04×1
1 0 0 0 pi3 − pi2
0 1 0 − pi3 0 pi1
0 0 1 pi2 − pi1 0
1 0 0 0 p j3 − p j2
0 1 0 − p j3 0 p j1
0 0 1 p j2 − p j1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)

where L pc j �
[

p j1 p j2 p j3
]T. Next, we perform an elemen-

tary linear transformation on the above equation. That is, both
sides of (68) are multiplied by matrix A4

A4 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
−pi2 p j3 + pi3 p j2

pi1 − p j1
− p j3 p j2

0 1 0 p j3 − p j1(pi2 − p j2)

pi1 − p j1
0 − p j1

0 0 1 − p j2 + p j1(pi3 − p j3)

pi1 − p j1
p j1 0

0 0 0 1 0 0

0 0 0
pi2 − p j2

pi1 − p j1
1 0

0 0 0
pi3 − p j3

pi1 − p j1
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(69)

M(i, j )k N A4

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

04×1 04×1 04×1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

04×1 04×1 04×1
0 pi3 − p j3 −pi2 + p j2
0 0 pi1 − p j1
0 −pi1 + p j1 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (70)

As shown, the fourth column of N A4 is the null-space of
M(i, j )k , and we denote it as N4 and can get

M(i, j )k N4 = 010×1. (71)

Since this holds for any i , j , and k, we conclude that
M N4 = 05m(w+1)×1. Therefore, when observing two points,
one degree of freedom of the rotation is unobservable.

3) Observation of Three Points: Similar to the previous
derivation process, we conclude that when three non-collinear
points are observed, we can determine all the unknowns.
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