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Abstract— Map construction in large scale outdoor envi-
ronment is of importance for robots to robustly fulfill their
tasks. Massive sessions of data should be merged to distinguish
low dynamics in the map, which otherwise might debase the
performance of localization and navigation algorithms. In this
paper we propose a method for multi-session map construction
in large scale outdoor environment using 3D LiDAR. To
efficiently align the maps from different sessions, a laser-based
loop closure detection method is integrated and the sequential
information within the submaps is utilized for higher robust-
ness. Furthermore, a dynamic detection method is proposed
to detect dynamics in the overlapping areas among sessions of
maps. We test the method in the real-world environment with
a VLP-16 Velodyne LiDAR and the experimental results prove
the validity and robustness of the proposed method.

I. INTRODUCTION

Substantial progresses in SLAM enable robots to con-

struct an accurate and even a dynamic-free map within a

single session using 3D LiDAR in outdoor environment

[1]. When the environment is large, the map is usually

represented as a conjunction of linked submaps, in which

way the computation burden could be restricted under a

sustainable range, which benefits the performance of SLAM

and localization algorithms. However, a single-session map

is not adequate for long-term operation tasks, especially

in outdoor environment where the dynamics can not be

suppressed. Besides the moving objects, there are many low-

dynamic objects in outdoor environment, such as the parking

cars, which keep still throughout a whole session but are

potential to change positions across sessions. If no priori

information is provided, they can not be distinguished within

a single session and are remained in the constructed map.

Those low dynamic objects in the map sometimes would

introduce wrong data association results for localization

algorithms as some part of the observation can not find

correct correspondences in the map. What’s more, they also

deteriorate the performance of navigation algorithms as some

free space is explicitly occupied in the map. To improve

the performance of outdoor tasks, multi-session of data is

required to remove the dynamics in the map.
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As for multi-session map maintenance, one of the most

important issues is how to efficiently align maps across

sessions. Maps in different sessions need to be conjuncted

into a whole map after alignment and a global optimization

could be applied to improve the consistency of the map. This

can also be regarded as a broader loop closure detection

problem, while in terms of laser-based algorithms, it still

remains to be a difficult problem due to the high ambiguity

of 3D point clouds.

Fig. 1: The framework of the multi-session laser-based map

maintenance method.

In this paper, a multi-session map maintenance method is

developed in large scale outdoor environment using the 3D

LiDAR. The map is conjuncted from linked submaps and

the intra-session loop closure detection is performed based

on the poses of submaps following an overlap-based outlier

detection. Extended from our previous work, information

from the history sessions is converted into feature vectors and

organized into a database for quick index. The inter-session

loop closure is detected for each scan based on the database

while performing laser-based SLAM method in a new session

and sequence information is used in order to improve the

robustness. What’s more, a new dynamic detection method

designed for detecting in sparse point clouds is proposed to

remove the dynamics out of the map. The main contributions

of this paper are as follows:

• Introduce a multi-session laser-based map construction

framework which is designed for serving localization

and navigation tasks in large-scale outdoor environment.
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• Integrate the laser-based loop closure detection method

in our previous work into the multi-session map

construction framework for map alignment based on

submaps and introduce sequential information to im-

prove the robustness.

• Propose a low-dynamic detection method between

sparse point clouds from different sessions to maintain

only the static parts in the map, which aims at suppress-

ing the influence from the dynamics in the environment

while localizing and navigating against the priori map.

The remain of the paper is organized as follows: Section

II gives a review of the related works and the followed

Section III introduces the system overview of the proposed

multi-session map construction method. Section IV, V, VI

separately demonstrate the single-session laser-based SLAM

method, inter-session loop closure detection method and the

multi-session map construction method implemented in the

proposed system. And in Section VII the experimental results

are presented. Conclusion and some discussions are showed

in Section VIII.

II. RELATED WORK

To bring the SLAM algorithms into practice, many re-

searches focus on how to improve the robustness in terms of

long term operation. Two of the relevant issues are addressed

in this paper: one is how to efficiently align the multi-session

results into a consistent map and the other is how to extract

the stable parts of the environment according to massive

sessions of data.

To realize multi-session map alignment, robots should be

capable of detecting loop closure globally and across ses-

sions. With the development of computer vision and machine

learning, vision-based loop detection method is gradually

mature in recent years. McDonald et al. [2] introduce anchor

nodes to combine the pose graphs from massive sessions

based on the loop closures detected from the visual-based

place recognition method. Recently Schneider et al [3] pro-

pose an impressive visual-inertial mapping and localization

framework named maplab. They use an efficient binary

description for loop detection then add the information as

edges into the posegraph for optimization. While in context

of laser-based methods, there still exists large difficulties.

Yang et al. [4] propose a global point cloud registration

method expanding from ICP algorithm [5] with Branch and

Bound [6] scheme. Though efficiently, it’s still hard to be

applied in large scale outdoor environment. SegMatch [7]

extracts segments from 3D point cloud and tries to match

them with segments extracted from history trajectories for

loop candidate detection. Being different from SegMatch that

utilizes features in the environment for detection, Yin et al.

[8] introduce LocNet to describe the whole range information

of a 3D point cloud for matching, which reveals good per-

formance in unstructured outdoor environment. In this paper,

we also introduce LocNet for point cloud representation and

detect loop closure for each laser scan against the history

point cloud information indexed in the database.

In the context of long-term localization and navigation,

it’s essential that robots should be capable of distinguishing

dynamics out of the static environment. Walcott-Bryant et al.

[9] propose the 2D dynamic pose graph SLAM and detect

dynamics across time on the occupancy grid map. While in

3D space, Fehr et al. [10] represent the environment using

tsdf-based structure, which could inherently distinguish the

empty voxel out of the unobserved one. Pomerleau et al. [1]

update the dynamic probabilities of the point cloud based

on the observations from each new scan while incrementally

mapping, they can also to large extend suppress dynamic

points from adding into the maps. In this paper we try to

detect the dynamics between two sparse submaps in out-

door environment. Instead of directly converting the whole

submap into a tsdf-based map, we propose a new detection

method which could largely decrease the computation bur-

den of building the voxel map and designed especially for

dynamic detection in multi-view merged submaps.

III. SYSTEM OVERVIEW

The overview of the large-scale multi-session mapping

framework will be introduced in this section. The frame-

work includes a single-session SLAM workflow, a multi-

session map maintenance system and a loop closure detec-

tion pipeline for cross-session loop closure detection among

submaps, as shown in Fig. 1.

In consideration of real-time performance, while perform-

ing the laser-based SLAM algorithm, the whole map is

organized by linked submaps, which are accumulated by

sequential laser scans following the map updating method

in [1] and little high-dynamic points would be remained

in the submaps. When a new submap is established, the

intra-session loop closure detection module will search the

loop closure candidates across the history submaps within

this session based on the priori pose estimations, following

a overlapping-based loop closure validation step. If a loop

closure is detected and validated, a global pose optimization

will be applied to improve the accuracy and consistency of

the SLAM results.

Besides loop closure detection within a single session, we

introduce the LocNet [8] for cross-session loop closure detec-

tion. LocNet converts the range information of each scan into

a compact feature vector and all of the feature vectors will

be maintained in an indexed database which enables quick

matching among large numbers of vectors. Therefore when

performing a new session of SLAM algorithm, a quick place

recognition process can be implemented for each scan based

on the existing database constructed from the information of

massive history data and the sequential detection information

within each submap is utilized for the inter-session loop

closure validation.

When a new session of map is constructed, we introduce

the inter-session loop closures as edges into the global pose

optimization framework to align the new session of map into

the history one. After the map alignment, dynamics will be

detected within the overlapping areas between each pair of

new and history submaps using our proposed sparse point
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cloud based dynamic detection method, which remains a

more static map that benefits future localization and navi-

gation tasks.

IV. SINGLE SESSION LASER-BASED SLAM

3D LiDAR could provide precise geometry information

from the environment, which makes the pose estimation more

accurate compared with the vision-based method. As for

outdoor environment, there exists many high dynamic objects

such as the moving cars and pedestrian, which should not be

included in the constructed map. In this section we utilize

the ICP method implemented from [11] for pose estimation

and follow the map updating method introduced in [1] to

accumulate the map.

In consideration of real-time performance when the explo-

ration area is large, we only perform the SLAM algorithm on

a submap and record the relationship between the neighbor

submaps for the global pose graph optimization. When the

relative transformation between the current pose and the pose

of current submap origin is beyond the designed threshold,

the current submap is regarded as finished and a new submap

is initialized on the pose of the current frame.

When a submap is finished, the intra-session loop closure

detection method will be executed. Some candidates might

be selected based on the priori pose estimation information

of the existing submap origins. If two submap origins are

close in Euclidean space, they are with high probability to

claim loop closure and are regarded as a candidate pair. We

then apply the ICP algorithm on the two submaps to compute

their relative transformation. If the result approximates their

priori relative transformation derived from the priori pose

estimations and the overlap ratio between the two submaps

is reasonable after the iteration result of ICP algorithm, this

candidate pair passes the validation process and is regarded

as a loop closure. Then a global pose graph optimization is

performed

{xi|xi ∈ X} =

argmin
xi

∑
xi

∑
xj∈Nxi

ρ(||(xi � xj)� zi,j ||2Ωi,j
) (1)

where X = {x0, x1...xn} represents the pose estimation set

of submap origins within current session, Nxi demonstrates

the neighbor set of submap xi, which includes both the suc-

cessive submaps while mapping and the submaps introduced

by the loop closures. The notation xi�xj means the relative

transformation between pose xi and pose xj as demonstrated

in [12]. zi,j represents the observation results computed from

the ICP algorithm between the successive or loop closed

submaps with the pose of xi and xj . ρ(·) is the robust

kernel and Ωi,j represents the information matrix. The whole

optimization function is solved using Levenberg-Marquardt

algorithm [13].

V. INTER-SESSION LOOP CLOSURE DETECTION

In our previous work [8], a global localization method is

proposed which converts the range information of each laser

scan into a feature vector using LocNet then place recog-

nition is achieved by matching the current feature vector

with the indexed database that contains the information of

the whole map. In this paper we integrate this method into

multi-session map maintenance framework for inter-session

loop closure detection.

Initially, in the first session we convert each laser scan into

the feature vector while performing the SLAM algorithm. In

the end besides saving the submaps and their relationships

for map maintenance, we also save all of the feature vectors

and index them into a loop closure database using the kd-

tree algorithm. When a new session of SLAM algorithm is

performed, after converting the current laser scan sci into

the feature vector lci , we search the closest feature vector

lhj in the kd-tree based database, which indicates the most

resemble laser scan shj in history sessions. We record the

submap mh
k which the laser scan shj belongs to as a label of

the current laser scan sci . If the distance between the matched

vectors is larger than dα, we consider there is no matching

history information for the current scan.

When this session of data has been processed, we select

the inter-session loop closure candidates by statistically

checking the place recognition results within each new

submap in a voting way based on the following criterion

• Sum up all of the submaps that are matched by the laser

scans in current submap mc
i . Compute the proportions

pj for each matched submap mh
j .

pj =
number of scans that match with mh

j

number of the scans in mc
i

(2)

• If the largest proportion pj is larger than γ, the current

submap mc
i and the history submap mh

j are considered

as a pair of loop closure candidate.

• If the sum of top n largest proportions is larger than γ,

and the corresponding matched submaps are neighbors,

all of the matched submaps are considered as the loop

closure candidates to the current submap mc
i .

After selecting the loop closure candidates, the global ICP

algorithm [4] is applied to compute the relative transforma-

tion between the two submap within each candidate pair. The

overlap-based outlier detection is also utilized to remove the

wrong loop closures as mentioned in section IV.

VI. MULTI-SESSION LASER-BASED SLAM

This section will introduce the multi-session map mainte-

nance method in our framework. When a new session of map

has been constructed and the inter-session loop closures have

been detected and validated, we utilize the loop closures as

indications to achieve map alignment. Further the dynamics

in the overlapping area between the matched new and history

submaps will be detected and removed.

A. Multi-session global optimization

We add the loop closure information as edge into the

global pose graph. Mathematically, we denote the pose set

of the history submap origins as Xh, the pose set of the
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Fig. 2: Four places where the inter-session loop closure detection method fails. The pictures in the first line are captured

from the sequence Day 3-1. And the pictures in the second line are the corresponding places in sequence Day 1-1.

submap origins in the new session as Xc, the set of inter-

session loop closures as O =
{
o(xc

i , x
h
j )
}
xc
i∈Xc,xh

j ∈Xh . The

optimization function is{
xi|xi ∈ (Xc ∪Xh)

}
=

argmin
xi

(
∑
xi

∑
xj∈Nxi

ρ(||(xi � xj)� zi,j ||2Ωi,j
)+

∑
o(xc

p,x
h
q )∈O

ρ(||(xc
p � xh

q )� zoi,j ||2Ωo
i,j
))

(3)

where the zoi,j means the relative transformation computed

using the ICP algorithm between the loop closed submaps.

We only set the origin of the first submap as the origin of

the whole map, therefore the whole trajectory of the new

session will be aligned into the same coordination of the

history map.

After the alignment of the new session, we once again

check loop closure for each submap in the new session

as mentioned in IV to expand the set O. And the global

pose graph optimization would further be applied for higher

accuracy and consistency.

B. Dynamic detection in sparse point clouds

The laser point clouds in the submaps are relatively sparse

than the point clouds constructed with RGB-D sensor [10],

[14], and the scale is also much larger than the general

RGB-D map. So we can not directly apply the existing

dynamic detection method in our framework. In this section

we introduce a voxel-based dynamic detection method which

is designed to process the sparse point clouds.

For each pair of loop closed submaps (mh
i ,m

c
j) indicated

in set O, we consider every submap is constructed from

two subsets which we denote as mh
i =

{
mhc

i ,mhc
i

}
, mc

j ={
mhc

j ,mhc
j

}
. Insides mhc

i and mhc
j represent the common

parts in both of the submaps; while mhc
i and mhc

j indicate the

different parts of the two submaps. The dynamic detection

process includes the following steps

• Transform the submap mh
j into the local frame of

submap mc
i .

• Construct a kd-tree from the submap mh
j to search

the closest point in the submap mc
i for each point in

mh
j . Keep those matched point pairs that their distances

are shorter than dβ as seeds. Further a region-growing

method is applied separately in mc
i and mh

j based on

the two sets of seeds to determine the subsets mhc
i and

mhc
j , while during growing both the distance between

points as well as the difference of normal vectors are

considered. Also mhc
i and mhc

j are determined as the

complementary sets of mhc
i and mhc

j .

• Build a voxel map based on the subset mhc
j . Use the

points in mhc
j for raycasting and only keep those oc-

cupied voxels which are in the front of each raycasting

line. Apply the same process on mhc
i .

• Use the remained occupied voxels building from mhc
i

for raycasting and coarse dynamic points could be

identified. Then apply a region-growing method to get

the final detected dynamic points. Record the points in

mhc
i that indicate the dynamics as m̂hc

i .

To update the submap mh
j , remove the detected dynamics

and add the points in m̂hc
i which indicate the dynamics into

it for mending the points behind the dynamics. Keep the

remaining submaps in the new session that do not share

large overlapping with the hisory map and update the whole

relative relationship among the submaps.

VII. EXPERIMENTAL RESULTS

In this section we test our multi-session map construction

and maintenance method in real-world environment. The

data is collected with a four-wheel mobile robot equipped

with a VLP-16 Velodyne LiDAR. All of the algorithms are

employed in an laptop with Intel i7-6700HQ @ 2.60GHz *

8 CPU and 7.7 GB memory. The environment we aimed for

constructing the map is the south part of Yuquan Campus,

Zhejiang University, China, which occupies around 250000

square meters.

A. Inter-session loop closure detection

We first test the performance of inter-session loop closure

method. For comparison with the single frame loop closure
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Fig. 3: The dynamic detection result in a submap. The blue points represent the origin laser submap. The red points represent

the detected dynamic points. (b) is the enlarged figure of the dotted area in (a).

detection results in [8], we also test the submap-based loop

closure detection on two sessions of Day 3 in YQ21 dataset.

YQ21 dataset is a 21-session dataset recorded in March 3,

7 and 9 in 2017, and each session follows the same routine

which is around 1.1km. While performing the single-session

SLAM algorithm, we set the translation threshold to create a

new submap as 20 meters and rotation threshold as 0.7 rad.

The loop closure detection results of every frame are

recorded and the performance is demonstrated in [8]. We

set the threshold γ as 0.95 and n as 3. It’s important to note

that in some frames where there are many dynamic objects

moving around the robot, the loop closure detection method

might fail to converge since the range information is largely

influenced. Also when detect loop closure across sessions

to merge a larger map, the distance between the current

feature vector collected from a never visited place and the

searched feature vector in the database is relatively large. In

this case the the loop closure detection method also returns a

failure signal. And for those frames the results are excluded

from the voting process. If all of the frames in a submap

fail the loop closure detection, this submap is regarded as

a undefined submap, which could be a new place that has

never been visited or a place with many dynamics. We build

the map with the data of Day 1-1 and test the inter-session

loop closure detection method on session Day 3-1 and Day

3-2. The results are shown in Table I.

TABLE I: The results of the inter-session loop closure

detection

Sequence total correctly matched undefined wrongly matched
submaps submaps submaps submaps

Day 3-1 73 68 5 0
Day 3-2 73 73 0 0

Fig. 4: The merging result from multi-session maps. (a), (b),

(c), (d) are four of the single-session of maps used for map

maintenance. (e) is the final merged laser map demonstrating

the south of Yuquan Campus.

As the results show, in most of the cases our proposed

inter-session loop closure detection method could correctly

detect the loop closure. And in these two sequences there is

no wrong detection result. We show the environment where

the undefined submaps collected from in Fig. 2. Since two

of the undefined submaps are neighbors, we only show four

places in Fig. 2. As we can see, in all of the four places,

the environment differs due to the parking cars; and these

cars are close to the robot when it collects the data. Those

close dynamic objects would cause largely changes in the

raw laser scans which leads to the failure of the loop closure

detection method.

B. Low dynamics detection in sparse point clouds
Based on the results of inter-session loop closure detection,

we can test the low dynamic detection method on any two
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of the matched submaps. The length of the voxel grid is

set as 0.04 m. We show one of the results in Fig. 3. As

the result shows, the parking cars could be distinguished

out as the dynamic objects. So as some points above the

ground which are part of the high dynamic points that are

not completely removed by the dynamic detection method

in single-session map construction. But many points on the

trees would also be detected. We think this is mainly due to

the sparsity of the submaps. While constructing the map from

one single-session of data, in order to reduce the computation

time and storage, we would down-sample the laser points

so the submaps could be sparse. So the point clouds of

the same tree but constructed from different sessions would

be different, which leads to the response of the dynamic

detection method. Since the points on the trees take an

important part in laser-based localization method, especially

for the outdoor environment, they should not be excluded

out of the submaps. So when doing dynamic detection, we

set a height threshold of 2m to avoid those points above that

being deleted from the submap.

C. Multi-session map construction

We finally construct a large laser map of the south part of

Yuquan Campus, Zhejiang University which covers around

250000 square meter, as shown in Fig .4 (e). And Fig .4 (a),

(b), (c), (d) are four of single-session of maps that used to

construct the whole map. For sake of the robustness of inter-

session loop closure detection, each new single session would

overlap a large part of the environment with the history map.

VIII. CONCLUSIONS

In this paper we propose a multi-session map construction

method for large-scale outdoor environment. The different

sessions of data are aligned with a laser-based loop clo-

sure detection method. And the redundant information is

discarded after the dynamic detection method has been ap-

plied between overlapped submaps. The experimental results

validate the capability of both the inter-session loop closure

detection method and the dynamic detection method.

However, there still exists some problems for those two

methods. As for inter-session loop closure detection method,

the detection results would be largely influenced by the

emergency of new objects which do not exist when the

previous data was collected, especially if these object are

close to the robot. We want to overcome this problem in

the future work by merging some priori information to

distinguish the dynamics.

Besides, the problem of the dynamic detection method

is that there usually exist some false positive detection

results. This problem is partially due to the sparsity of the

submap, and partially because this method is sensitive to the

precision of the submap alignment. If there is some error

in the estimation of the relative transformation between the

overlapped submaps, especially if the error exists in the pitch

or roll direction, wrong detection results would occur. We

will try to solve this problem in the future work.
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